5s SYNACKTIV

IEDIGITAL SECURITY

Modmob tools and tricks

Using cheap tools and tricks to attack mobile
devices in practice

By Sébastien Dudek

Troopers - NGl

March 18th 2019

. (update: 19/04/2019)

About me

B Sébastien Dudek
(@FIUXIuS)

B Working at Synacktiv:
pentests, red team, audits,
vuln researches

B Likes radio and hardware

B And to confront theory vs.
practice

B First time at Troopers =)!

This presentation B

B Few reminders:
B talk about interception techniques in practice
B existing tools

B Our contribution:

B feedbacks of our tests (mobile phones, intercoms, cars...)
B tools we made (Modmobmap and Modmobjam);

B some cheap tricks;

B some hardware attacks.

+ meet us tomorrow at Telco Security day — Modmob tools
internals, updates, and more! ;)

Introduction HE

N
B Mobile network — more than 30 years
B 1G: analogic, bandwidth depending on the system (30 kHz
for AMPS, 25 kHz for TACS, etc.);
B 2G: FDMA (25 MHz) in combination with TDMA (in Europe);
B 3G: WCDMA fixed to 5 MHz, 10-20 MHz with carrier
aggregation
B 4G: OFDMA (downlink) and SC-FDMA (uplink), min. 1.4
MHz bandwidth (most common 5 MHz), CA up to 640 MHz
(3GPP release 13)

B Evolution of modulation techniques and encoding — better
capacity, growth services...

B Current use of the mobile network:

B intercoms, delivery pick-up stations;
B electric counters;
B cameras, cars...

Use of mobile network with intercoms HE

(R e nterem °
| X

Admin Intercom centralized server

MSC/VIR PSTN, ISDN, /)
P PSDPDN, CSPDN,

= Gateway
| BTS / (e)NodeB
pen the door

‘E,z

= Callinterzept commands
Resident’s phone

Door

5G is coming...

B LTE-A(dvanced)++ — 10
Gbps - 100 Gbps]
theoretically), broader l
spectrum | | |
B Targets loT ecosystem b "l“ E
B C-V2X _ |] \
(Vehicle-to-Everything): :
B infrastructures (V2I); 6\ ﬁ\
B networks (V2N); / \ /

m vehicle (V2V), cwx
B pedestrians (V2P); &g (o= o Nerwork

H babies (V2B)?...

source: blog.co-star.co.uk

Security of communications

B 2G, 3G and 4G technologies are more accessible —
OpenBTS/OsmoBTS/YateBTS, OpenBTS-UMTS, srsLTE,
Amarisoft LTE, ...

B Publications exist on A5/1 about weaknesses

B GPRS, 3G and 4G use stronger ciphering algorithms:
B KASUMI (UEA-1 algorithm);
B Snow-3G (UE-2), second algorithm for UMTS and used for
LTE (128-EEAL);
B AES 128 bits (128-EEAZ2) in addition to Snow-3G for LTE.

Security of communications (2) HE

Client

Only if USIM is

Network NO used (not SIM)

authentication

integrity NO YES YES

YES

. KASUMI| | SNOW-3G |
Encryption AS5/1 SNOW-3G | AES | ZUC...

— Exception exist depending on baseband implementation

Targets in GPRS, UMTS and LTE exchanged |}

data

IP — handled by Packet Data Convergence Protocol...

I
I
I
I
I
I
I
I
I
I
I
it
I
I
I
I
I
I
I
L

source: what-when-how.com

Uu Iu Gn
i [I
P i | ! ™
1 -y I |
f — 1 = = — I 7 — |
é PDCP : mlhl ay_1p| | GTP GTP ! - GTP
RRC : RRC I UDP/TCP| | | UDPAICP|UDPATCP | 1 | upprrcp
1 I [|
RLC : RL.C : IP : 1P IP : P
I 1 I |
[Mac || mac I L2 |!] L2 L2 ! L2
I I I |
[WCDMAL1| | WCDMALE[L1 || L1 L1 : L1
] i [[
1
Non access stratum :
I
MS RAN 3G SGSN 3G GGSN

Requirements

Software-Defined radio

To interface to devices using the mobile network:

Peripheral | Frequency Max. Supported Frequency TXIRX
Sampling software stability Channels

CANICNA
(rate, width)

12 bits lock

USRP B2x0 |70 Mhz -6 |61.44 Msps, |- 2G: OpenBTS +2 ppm without |- B200: 1 Tx + 1 |~800€
GHz 12 bits and OsmoTRX GPSDO Rx min.
- 3G: OpenBTS- -B210:2 Tx + 2
uUMTS Rx
- 4G: sIsLTE
- 5G:
OpenAirinterface
BladeRF 1.x | 300 MHz — |40 Msps, 12 | - 2G: YateBTS +1 ppm 1Tx+1Rx ~400€
38 GHz bits . 4G: sISLTE min.
- 5G:
OpenAirinterface
LimeSDR 100 kHz- |61.44 Msps, |- 2G: OpenBTS +2.5 ppm 2Tx+2Rx ~300€
3.8 GHz 12 bits with OsmoTRX min.
- 4G: srsLTE
- 5G:
OpenAirlnterface
XTRX 30 MHz - 120 Msps - 2G: OpenBTS +0.5 ppmwith |2 Tx + 2Rx ~260€
3.7 GHz SISO/ 90 with OsmoTRX GPS/+ 0.01 min.
Mss MIMO, [(beta) ppm with GPS

AL SECURITY

Alternatives HE

sysmoBTS for GSM and GPRS

sysmoNITB for 3G/LTE — requires a custom/vulnerable
femtocell

LTE LabKit by Yate for LTE;

Amarisoft LTE — relevant and, as a great core network
implementation and includes Cat-NB1/NB2 and others...

commercial version of srsLTE including Cat-NB1

specialised equipments like CMU200 — helped some
researchers to find vulns in CDMA baseband stacks ;)

Set-up: architecture example with bladeRF Il
|

O
3

Mabile BladeRF @

Computer

Intercom

Alternative: a limeSDR mini + o0smoBTS (and other osmo*
components) for almost 100€ min.

Enabling GPRS on YateBTS

As explained on YateBTS Wiki: edit the ybts.conf file

[gprs]
Enable=yes

for NGl invitation and information And configure the Gateway
GPRS Support Node section to handle exchange: GPRS «+»
Internet

[ggsn]

DNS=8.8.8.8 8.8.4.4 ; its preferable to use your own servers for client side attacks
IP . MaxPacketSize=1520

IP . ReuseTimeout=180

IP.TossDuplicatePackets=no

Logfile .Name=/tmp/sgsn.log

MS.IP .Base=192.168.99.1

MS. IP . MaxCount=254

TunName=sgsntun

Testing it B
|

Don't forget to forward traffic from the internal network:

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables —A POSTROUTING —t nat —s 192.168.99.0/24 ! —d 192.168.99.0/24 —j MASQUERADE

And we are connected in GPRS (using a Nexus 5X phone):

Attracting mobile devices

Possible ways B

B Mobile devices always look for better signal reception

B Generally there is > 1 mobile stack
B Few tricks to consider:

B use of custom (U)SIM card,
B Faraday shield isolation;
B downgrade attacks;

We'ill see how to revisit it with cheap equipments + some style

D

Method 1: Custom SIM/USIM cards

B Prepaid SIM/USIM card in some cases
B Or custom SIM/USIM card from sysmocom for example
— Make the fake BTS/(e)NodeB act as a legit BTS

Method 1: Custom SIM/USIM cards I=

B Prepaid SIM/USIM card in some cases
B Or custom SIM/USIM card from sysmocom for example
— Make the fake BTS/(e)NodeB act as a legit BTS

Becaution with PIN auto-typing — use a SIMtrace tool to get
the typed PIN

Program sysmoUSIM cards

B Could be entirely configured — PySIM and
sysmo-usim-utils
B Configure secrets:
B Ki (subscriber key);
B OP/c (Operator Variant Algorithm Configuration field);
B and MCC/MNC to avoid roaming forcing on the User
Equipment (UE).

$ sudo python pySim—prog.py —p0 —t sysmoUSIM—SJS1 —a 50024782 —x 001 —y 01 —i
9017000000##*** —s 898821100000024***** [...]

> Ki : 6abb9ae663f9889eddaae298cdch4ect

> OPC : 074a3a73ed3c54e1960e9e5732ff35b1

> ACC : None

SIMtrace for the rescue

Sniff auto-typed PINs with the Osmocom SIMtrace:

Method 2: Faraday cage

B Mostly cumbersome and expensive
M But could be improvised considering several elements:

B Frequency;

B Wavelength;

B Power of reception or transmission;

B Distance between the receiver and the transmitter.

B Cage with meshes — optimised windows against reflection
of the electric field

B Shielding boxes attenuate the signal quietly good!

Practical shielding box for us:
1 Kg M&Ms box

Can feat small devices as well as a bladeRF, or limeSDR

Space optimisation HE
N

We can use antenna extenders to avoid to put entire devices...

Final set-up

And fill holes with an aluminum foil tape...

Method 3: Downgrade attacks

B Use a chear 2G/3G/4G jammer and rework it
B Or perform smart-jamming:
monitor and collect cells data

jam precise frequencies from collected cells — choose few
target operators

Monitoring: State of the Art]
N

Recorded mobile towers

B OpencCellid: Open Database of Cell Towers
B Gsmmap.org
B and so on.

Live scanning tools

Monitoring: State of the Art]
N

Recorded mobile towers

B OpenCellid: Open Database of Cell Towers

B Gsmmap.org
B and so on.

But these solutions don’'t map in live and do not give precise
information about cell towers.

Live scanning tools

Monitoring: State of the Art]
N

Recorded mobile towers
Live scanning tools

W for 2G cells:

B Gammu/Wammu, DCT3-GSMTAP, and others
B OsmocomBB via cell_log application
M for 3G, 4G and more:

B only tricks: use of exposed DIAG interface —decoding
—GSMTAP pseudo-header format

B SnoopShitch: not reflexible, but could be reworked for our
purposes ;)

Methods to capture cells information

Possible methods are:
B Software-Defined Radio
B Exposed diagnostic interfaces
B Use of Android RIL

Software-Defined Radio

Existing tools:
B Airprobe or GR-GSM
B OpenLTE: LTE_fdd_dl scan
B srsLTE with srsUE

Software-Defined Radio

Existing tools:
H Airprobe or GR-GSM
B OpenlLTE: LTE_fdd_dI_scan
M srsLTE with srsUE

No 3G tools to capture cell information.

Exposed DIAG interfaces

B Good alternative

B Could work with almost all bands we want
H Alittle expensive: almost 300€

M requirements:

U/EC20 3G/LTE modem

Cheaper way

B U/EC20 3G/LTE modem
B And an adaptater with (U)SIM slot

RIL on Android

B Daemon forwards
commands/messages:
application =Vendor RIL

B vendor library is prorietary
and vendor specific

M vendor library knows how
to talk to modem:

B classic AT

B QMI for Qualcomm

B Samsung IPC Protocol
B and so on.

yyyyyyyy

Packet Driver
PPP, for example

ServiceMode on Android

B Usually activated by typing

a secret code

B Gives interesting details of

current cell:

B implicit network type

B used band

B reception (RX/DL)
or/and transmission
(TX/UP) (E/U)ARFCN
(Absolute Radio
Frequency Channel
Number)

B PLMN (Public Land
Mobile Network) number

B and so on.

RRC:IDLE, Band:1
PLMN:208-11

RX:10762 RI:-84 CID:a21¢c5
TX:9812 Eclo:-2 RSCP:-86
L1:PCH_Sleep PSC:507 DRX:128
SERVICE : LIMITED

Speech VER : FR FR FR
therm: 111 LNA: 0

SIB19 None

PA STATE : 0 (APT), HDET : 0
NETWORK : UNBLOCK

IMEI Certi: PASS, 1

Unknown

ServiceMode in Samsung

Samsung ServiceMode in brief |
N

*#0011+# secret code handled by ServiceModeApp_RIL
ServiceModeApp activity

ServiceModeApp —IPC connection
—SecFactoryPhoneTest SecPhoneService

ServiceModeApp starts the service mode
—invokeOemRilRequestRaw() through SecPhoneService
(send RIL command RIL_REQUEST_OEM_HOOK_RAW)

A ServiceModeApp process in higher level ServiceMode
messages coming from RIL.

Two good places exist: RIL library independent of Vendor RIL
library implementation, or use invokeOemRilRequestRaw()

Few contraints to resolve

How to support other operators than your own SIM card?

How to enumerate cells a MS (Mobile Station) is supposed
to see?

The camping concept in brief

Let’'s remember 3GPP TS 43.022, ETSI TS 125 304...

B When selecting a PLMN —MS looks for cells satisfying few
conditions (cell of the selected PLMN, not barred, pathloss
between MS and BTS below a thresold, and so on.)

H Cells are checked in a descending order of the signal
strength

B If a suitable is found —MS camps on it and tries to register

The camping concept in brief |
N

Let's remember 3GPP TS 43.022, ETSI TS 125 304...

B When selecting a PLMN —MS looks for cells satisfying few
conditions (cell of the selected PLMN, not barred, pathloss
between MS and BTS below a thresold, and so on.)

B Cells are checked in a descending order of the signal
strength

H If a suitable is found —MS camps on it and tries to register

Verified through DIAG and ServiceMode

If registration fails —MS camps to another cell until it can
register —verified via DIAG and ServiceMode

Automate cell changes with AT commands Il

Android phones often expose a modem interface (e.g.
/dev/smd0), but could also be exposed in the host with few
configurations

127|shell@klte :/ $ getprop rild.libargs
—d /dev/smdO

It is possible to:

M set network type: AT"SYSCONFIG

M list PLNM and select a PLMN: AT+COPS
~requires root privileges if it is performed in the phone

Modmobmap: the monster we have created Il

We implemented interesting techniques in a tool we called
"Modmobmap” (reminds some tasty korean dish)

d

Dev. Router ios Utils

AT) |

Monitoring 2G/3G/4G cells

B Using Modmobmap:

$ sudo python modmobmap.py —m servicemode —s <Android SDK path>

=> Requesting a list of MCC/MNC. Please wait, it may take a while...
[+] New cell detected [CellID/PCI-DL_freq (XXXXXXXXX)]

Network type=2G

PLMN=208—20

ARFCN=1014

Found 3 operator(s)

{u’20810': u'F SFR’, u’'20820': u'F—Bouygues Telecom’, u’20801’': u’'Orange F'}
[+] Unregistered from current PLMN
=> Changing MCC/MNC for: 20810

[+] New cell detected [CelllID/PCI-DL_freq (XXXXXXXXXX)]

Network type=2G

PLMN=208—20

ARFCN=76

[...]
[+] New cell detected [CellID/PCI-DL_freq (XXXXXXXXXX)]
Network type=3G
PLMN=208—1

Band=8

Downlink UARFCN=3011

Uplink UARFCN=2786

[+] Cells save as cells_1536076848.json # with an CTRL+C interrupt

Results of Modmobmap

The script produces a JSON file you can use with your own
tools:

"hbxxx — 76" {

"PLMN™": "208 —10",
"arfen”: 76,
"cid”: "4bxx",
"type”: "2G”

}

"60%*%x —2950": {
"PLMN”: "208—20",
"RX": 2950,

"TX": 2725,
"cid” i 60x%xx,
"band”: 8,
"type": "3G”

— but we’ll see how it could be used for Jamming purposes!

Jamming in general HEB

With a portable/chineese device

M cheap

B jam the whole 2G/3G/(4G?) bands but requires some
modifications

B poor signal

Desktop jammers

Jamming in general

With a portable/chineese device

Desktop jammers
B heavy, cumbersome but powerfull
B also needs a disabling to conserve rogue cells’ band

"Smart” jamming

B Jam only targeted cells
B Stealth against monitors

B In 3 steps:

scan cells with Modmobmap;
target an operator;
and jam only targeted channels;

We have also made a tool for that! — Modmobjam — use
Software-Defined radio

»Smart” jamming HE

B Jam only targeted cells
B Stealth against monitors
B In 3 steps:

scan cells with Modmobmap;
target an operator;
and jam only targeted channels;

We have also made a tool for that! — Modmobjam — use
Software-Defined radio

Forbidden

Do it at your own risks and adjust settings to the targeted

parameter only. The same should also be done with you fake
BTS.

Jamming with Modmobjam

m G "3 1= suio python Siartjon rpc.py -1 Gells 1523367450, 300
ampl e |5 o companion ammergen ore 317 1
- o

b gon: 55

‘ =
begai 55

g
b o756
g
bo gain
e
b [0
o

e Edt vew i Toos tolp
M= X 22 % o8 @%b B¢ -~ < 05 @

W con sider || wocGursider || W Gl sider || o ursider | [voc con sider

Byte 0ps

Channel
Channsl ode

ok con s coing
s Control port

Erorcoding

fertpets L > e operators
| Gl Fior
e T == | e

127001 (279012018 16:13:051 05T |
oA PRt a——] g +

Capturing mobile data of a famous intercom in France

Analyzing GPRS data

Once we have trapped a device, its IMSI (International Mobile
Subscriber Identity) is listed:

nipc list registered
IMSI MSISDN

2080 LXXXXXXXXXXXX 69691320681

Status displayed in SGSN Mobile list:

mbts sgsn list
GW Context: imsi=2080IXXXXXXXXXXXXX ptmsi=0xd3001 tlli=0xc00d3001 state=
GmmRegisteredNormal age=5 idle=1 MS#1,TLLI=c00d3001,8d402e2e IPs=192.168.99.1

Spotting used APNs

Using the GSMTAP interface

No. Source Destination Protacol Length Time Info
39097 127.0.0.1 127.0.0.1 GSM RL. 111 418.920355427 GPRS UL
39101 127.0.0.1 127.9.0.1 GSM RL.. 81 418.935371177 GPRS DL:GPRS DL:PACKET_DOWNLINK_DUMMY_CONTROL_B
20167 127 A 8 1 197 861 cem B 21 412 0255477267 BDRS NI -RDRS NI - DACKET DOWMLTNIC DUMMY CONTROL R
»

~ Data (50 bytes)
Data: B1c09d0a410503020000800009900000D0E000E800O0O20T. . .
[Length: 58]

00 68 60 00 06 GO 00 B 00 6O 68 00 68 68 45 6O E

@@ 61 7e 27 40 00 49 11 be 62 7 0@ B0 01 7T @O a~'@m@ ‘b

09 01 81 24 12 79 00 4d fe 60 02 04 ©1 02 40 GO Eym - @
0030 @0 00 BE @0 5c 5a @b B0 00 66 04 Oc O1 N\

040
0058
060

Could be interesting to intrude a virtual mobile network with a
provided M2M SIM card

Capture exchanges B

On the tun interface dedicated to SGSN:

Source Destination Prutocul Lengtf Time Info
1 192.168.99.1 8.8.8.8 4 0.000000000 Standard query 9x11d8 A gsm. .info
2 8.8.8.8 192.168.99.1 DNS EU ©.037753523 Standard query response ©x11d8 A gsm. info A 91.
3 192.168.99.1 91.121 Tcp 48 0.419114786 80 — 60001 [SYN] Seq=0 Win=16384 Len=@ MSS= 1460 M‘S 1
491.121. 192.168.99.1 TCP 48 0.425593082 60001 - 8O [SYN, Ack=1 Win=29200 Len=0 M55=146
§ 192.168.99.1 91.121 TCP 40 0.855774038 80 - 60081 [ACK] Seq=1 Ack=1 Win=16384 Len=0
6 192.168.99.1 91.121 TCP 117 1.120101836 80 — 60001 [PSH, ACK] Seq=1 Ack=1 Win=16384 Len=77
791.121 192.168.99.1 TCP 40 1.126491129 60001 - 80 [ACK]
8 91.121. 192.168.99.1 TCcP 60 1.120285601 60001 - 88 [PSH,
991.121. 192.168.99.1 TCcP 40 1.120573587 60001 - 88 [FIN, ACK] Seq=21 Ack 78 ‘ld]n 29312 Len <]
1@ 192.168.99.1 91.121 TCcP 40 1.637377585 8@ -~ 60001 [ACK] Seg=78 Ack=21 Win=16364 Len=0
11 192.168.99.1 91.121 TCcP 40 1.698825585 8@ -~ 60001 [ACK] 2 Win=16384 Len=@
12 192.168.99.1 91.121. TCP 40 1.722705944 8O — 60001 [FIN, =78 Ack=22 Win=16384 Len=0
13 91.121 192.168.99.1 TCP 40 1.728877051 60001 - 80 [ACK] Seq=22 Ack=79 Win=29312 Len=@

In that case: two server ports identified — 60001/tcp and
55556/tcp

AL SECURITY

Talk with one service

We could talk with a sort of synchronisation service on port
6001/tcp:
In

In
In

socket

binascii

: ip '91.121. XXX.XXX"

In 1 port 60001

In 1 s = socket.socket(socket.AF_INET, socket.SOCK STREAM)
In : s.connect((ip, port))

In [8]:
s.send(binascii.hexlify("011e4d25636014006600000000000000090000011e1540XX[...1"))
Out[8]: 320

In [9]: data = s.recv(1024)

In [10]: data

Out[11]: '2018/09/07 15:09:01\n'

~NOoO B WN

In that case: two server ports identified — 60001/tcp and
55556/tcp

Identification
And could noticed that messages where only identified:

44

Strange messages

When updating the device: some unknown messages are
exchanged on port 55556/tcp

No. Source

Destination Protocol Lengtt Time
iiv il

Dst: 192.168.99.1
) Tantmieston Contron. brotossl, Src Pare. 55556, Dot Pors 0, Seq: 7, Ack: 79, Len: 437

Strange messages (1)

By a naive approach it looked to be encrypted:

$ ent payload.hex
Entropy = 7.371044 bits per byte.

[..1]

We have to ook at the firmware to try to decode this message

UMTS interception B

B OpenBTS-UMTS could be used
B But doesn'’t support authentication and ciphering — SIM

mode only can be used
Disabling USIM mode with a sysmoUSIM card:

$ sudo python sysmo—usim—tool.sjsl.py —a 772x%%%%x —C

[...]
==> USIM application disabled

Other alternatives: CMU2000, vulnerable/custom femtocells...

LTE interception B
|

B Use of srsLTE — free and stable
B Secrets of the SIM should be configured (ex. sysmoUSIM):

B RAND: generated challenge by the HSS (Home Suscriber
Server) in the HLR/AUC — generates next authentication
vectors

B XRES: result of the challenge/response by the UE

B AUTN: authentication token

B KASME: derivation key of the ciphering and integrity keys

SrsLTE setup

Secrets could be setup in the user_db.csv DB of LTE EPC
network:
vi /root/.srs/user_db.csv

]
ue3,9017000000xx+##,b5997ac4a912e9c6216e13951029¢674 , opc 83 e5d3f22dasll
0725081675d2e9¢9d9,9001,000000000062,7

A good configuration should result as follows:

[...]
UE Authentication Accepted.

[...]
SPGW Allocated IP 172.16.0.2 to ISMI 9017000000##x%x*

srsLTE setup .=

Secrets could be setup in the user_db.csv DB of LTE EPC
network:

vi /root/.srs/user_db.csv

]
ue3,9017000000 %, b5997ac4a912e9c6216e13951029¢674 , opc 83 e5d3f22dasll
0725081675d2e9¢9d9,9001,000000000062,7

A good configuration should result as follows:

[...]
UE Authentication Accepted.

[...]
SPGW Allocated IP 172.16.0.2 to ISMI 9017000000##x%x*

Problems with IoT modems

IoT modems use Cat M1 and NB-loT — only implemented in
commercial/private version of srsLTE and Amarisoft

Go further in 5G HE

B Use of OpenAirinterface5G
B EPC part requires a licence

B NextEPC or pycrate_mobile could be used and readapted
for the EPC part

Issues during tests HE

Generally, data are trusted and sent in clear-text, but there are
some exceptions:

B whitelist of connections to the backend;
B use of client side certificates;

Moreover, USIM card could be embeeded — potentially
accessible via SPI interface — try a kind of relay attack

P Hard way

Identifying components

The 3G intercom

B SIM/USIM slot (yellow)

B 3G modem (blue)

B MCU (Microcontroller Unit)
(green)

B A strange interface (red)

SIMS215E o

Microchip - PIC24FJ128 - GA006

Use schematics to identify PINs via continuity tests:

Identified PINs

P I o =t | sosconcucamcie
pin 25); i B
B PGD1 (pin 16): e P S
1 WCIR |7 42 [ICURTCC/NT1/RDB
PMAZ/SSZICN1IRGS [8 PIC24FJXXGA006 a v
ves[o PIC24FJXXXGA006 40] OSC2ICLKORC 15
H . veo[] 10 39] OSCH/CLKIRCT2
B Vdd (pin 38 s - S
oo A=
- C2N/ANZISSTICN4RB2[] 14 35 [TIRTS/BCLK/SCKIINTORF6
B /MCLR (pin 7); oo e =l

POC2IEMUCZIANGIOCFARSE {17
PGO2IEMUDZIANTIRE? £ 16

AL SECURITY

Interfacing and dumping the firmware

Firmware analysis: strings

Firmware dumped in Intel Hex format and contains AT
commands: AT+COPS; AT+CREG

0001ab00 02 00 78 00 00 80 fa 00 00 00 06 00 41 54 00 00
0001ab10 2b 4e 00 00 45 54 00 00 43 4c 00 00 4f 53 00 00
0001ab20 45 0d 00 00 00 2b 00 00 43 4c 00 00 49 50 00 00
0001ab30 3a 20 00 00 22 1b 00 00 df 22 00 00 2c 1b 00 00
0001ab40 ef 00 00 00 45 52 00 00 52 4f 00 00 52 00 00 00
0001ab50 41 54 00 00 2b 43 00 00 4f 50 00 00 53 3d 00 00
0001ab60 33 2c 00 00 32 0d 00 00O 00 41 00 00 54 2b 00 00
0001ab70 43 4f 00 00 50 53 00 00 3f Od 00 00 00 2b 00 00
0001ab80 43 4f 00 00 50 53 00 00 3a 20 00 00 1b ef 00 00
0001ab90 2c 1b 00 00 ef 2c 00 00 22 1b 00 00 df 22 00 00
0001aba0 2c 1b 00 00 ef 00 00 00 2b 43 00 00 4f 50 00 00
0001abb0 53 3a 00 00 20 30 00 00O 00 41 00 00 54 2b 00 00
0001abcO 43 4f 00 00 50 53 00 00 3d 34 00 00 2c 32 00 00
0001abd0 2c 1b 00 00 eb 2¢c 00 00 32 0Od 00 00 00 41 00 00
0001abe0 54 2b 00 00 43 53 00 00 51 Od 00 00 00 2b 00 00
0001abf0 43 53 00 00 51 3a 00 00 20 1b 00 00 ef 2c 00 00
0001ac00 1b ef 00 00 00 41 00 00 54 2b 00 00 43 52 00 00
0001acl0 45 47 00 00 3f Od 00 OO 00 2b 00 00 43 52 00 00
0001ac20 45 47 00 00 3a 20 00 00 1b ef 00 00 2c 1b 00 00
[...]

Firmware analysis: strings (2) HE

Looking for strings, it was possible to quickly find AT commands
used to connect to endpoints:

B AT+TCPCONNECT="gsm. XXXXXXXXX.info”,60001,

B AT+TCPCONNECT="gsm. XXXXXXXXX.info”,5555 (last
number "6” is missing);
B AT+TCPCONNECT="91.121.XX.XX",56555 (last number "6”
iS missing).
But also intercom’s number ID XX4015:

00017d80 15 40 XX 00 80 4a 78 00 63 00 60 00 66 40 78 00 |.@X..Jx.c.'.f@x.|

Firmware disassembly

M No disassembler available
for PIC24 before

B But changed with IDA 7.2
and of course Ghidra!

Output | Inspector

Program Memory x

L} Line Bddress Opcode Label Dishssy
Q) |__lzs.856 [ocore Jovrmec [RCALL 0xcoDe
25,857 |0CAOD [R962E6 [ECLR PORTG, #3
b 25,858 0TFFER [RCALL 0xCDe
=3 25,859 [BCLR PORTG, #2
& 25,860 IRETURN
25,861 [BCLR PORTE, #3
25,862 [ECLR PORTG, #2
25,863 [RCALL 0xCDe
25,864 [BSET PORTG, #2
25,865 IRCALL 0xC9D8
25,856 [BSET DORTE, #3
25,867
25,868 [WL5++]

We

cL, W3

BRR Z, 0xCAIE

CALL 0xCé64

lmoE

871
573
874
L 875
(876

MOV 0x27C4, W3

Memory |Program Memory

~ | Format |Code

Hardware audit tip

Like almost every vendor’s IDE, MPLAB gives status of

memory protections/fuse bits:

Output | Inspector | Configuration Bits x
S Address Neme Value Field Option Category Setting
a 157FC CONFIG2Z 7ABE POSCMOD HS Primary Oseillator Select H5 Oscillator mode selected
OSCIOFNC OFF Primary Oscillator Output Function OSCZ/CLEO/RCLS functions as CLKG (FOSC/2)
G4 TCRSM _ CSDCMD Clock Switching and Monitor Clock awitching and Fail-Safe Clock Monitor are disabled
L 8 FHOSC PRL Oscillator Select Privary Oscillator (KL, 5, EC)
= TES0 OFF Internal External Switch Over Mode 1ESO mode (Iwo-5peed Start-up) disabled
Bl | iswre comer szre wores Bsase Tatchdog Timer Postscaler 1:256
TWPsE PRIZE WOT Prescaler Frescaler ratio of 1:128
WINDIS _ O Watchdog Timer Window Standard Watchdog Timer enabled, (Windowsd-mode is disabled)
TWOTEN _ OF TWatchdog Timer Enable Watchdog 1imer is enabled
1cs BGxL Comn Channel Select Emulator/debugger uses EMUCL/EMUDL
GHEE CEE o lGeneral code SegUent WILte PIOLECT |WEILSS O progrem memory are e
| OFF General Code Segment Code Protect Code protection is disabled
T TRETETT TREET S e s cnni

Other Interfaces .=

Various other interfaces could be found in the wild

B UART (Universal Asynchronous Receiver/Transmitter): to
interface to bootloader (ex: uBoot) and device terminal

B JTAG (Joint Test Action Group): to communicate with the
different devices of the PCB

B SPI (Serial Peripheral Interface): communication MCU «»
other peripherals

B [2C: link MCU, EEPROMS, and other modules

B others In-chip interfaces, etc.

These interfaces can be found with logic analyzers, probes, but
also dedicated tools sometimes...

Device to interface HE

Various devices could be used to get accesses to an interface:

B The famous SEGGER JLink that works like a charm, but
expensive depending on options...

B Bus pirate v3 (warning v4 not mature enough)
B BusVoodoo — supports 14 TTL/CMOS protocols

B HydraBUS — another powerful swiss knife (include a funny
NFC modules for emulation and could be used to
bruteforce JTAG PINSs)

B and so on.

Sometimes rare/industrial protocols and MCUs could also be
supported by Trace32 tools — it has a costs

Bruteforcing JTAG and UART PINs

For almost 200€ with JTAGulator

Bruteforcing JTAG and UART PINs (2) HE

With BUSSide for almost 8€:

Chip-off in last resort

Example with a TSOP48 flash:

Memory protections bypasses

B Block reading by backdooring the entrypoint on
PIC18F552 (ex: iCLASS keys extraction)

B Cold-Boot stepping attacks on STM32FO0 series
B UV-C attacks

B RDP2 downgrade to RDP1 on STM32F1 and STM32F3
(ex: TREZOR wallet hack — wallet.fail)

B and so on.

Other interesting targets

Other targets] |

B Like intercoms: use of Mobile network is convenient — no
wires no problem
B Overcases:

B Deposit cases;
B Alarms;
B Connected cars...

[Other interesting targets

Other targets] |

B Like intercoms: use of Mobile network is convenient — no
wires no problem
B Overcases:

B Deposit cases;
B Alarms;
B Connected cars...

Garage hacker: the CAN bus

B ODB/ODB?2 interface: a lot
of interest

M Possible to interact in the
CAN bus

B But too many messages
are broadcasted in it —
needs processing to focus
on interesting messages

However, the car as many interfaces that interacts with the
CAN bus

Connected cars

B Mobile network is generally
used

M Possible to install
applications

B GPRS is generally used for
middle class cars — really
easy to intercept

M But parking cars are also
well isolated —
Modmobjam not needed

Our target

B Enable the installation of applications
B Can be update

B Plenty of available applications:

B Twitter application and Facebook (WTF?)
B Meteo

m GPS

B etc.

And all of that "in the air”

Hunting for mobile modules remotely HE

Using a BladeRF:

Issues in our context

B The servers could not be contacted with an arbitrary
connection :/

B We can still poison/hook all DNS queries and get requests
from clients — attack the client with a fake server

Client-side attack: new captures]

Surprise: all requests made by the board computer and apps
are in clear HTTP...

10 1.459318826 192.168.99.2 192.168.99.254 HTTP 913 POST /Service/InitSession/l HTTP/1.1 (applicat:

10 7.536500505 192.168.99.2 10.91.80.203 HTTP 52 HEAD http://master.coyoterts.com HTTP/1.1

26 13.660617735 192.168.99.2 10.91.80.203 HTTP 52 HEAD http://master.coyoterts.com HTTP/1.1
65021 922.704281910 192.168.99.2 10.91.80.203 HTTP 52 HEAD http://master.coyoterts.com HTTP/1.1
66923 046.703883356 192.168.99.2 10.91.80.203 HTTP 52 HEAD http://master.coyoterts.com HTTP/1.1
69066 974.461373298 192.168.99.254 192.168.99.2 HTTP 173 HTTP/1.6 404 File not found
69093 974818419668 192.168.99.2 192.168.99.254 HTTP 52 HEAD http://master.coyoterts.com HTTP/1.1
70396 990503915759 192.168.99.2 192.168.99.254 HTTP 486 POST /api/app/call HTTP/1.1 (application/x-protobuf)
76401 990.504776592 192.168.99. 254 192.168.99.2 HTTP 399 HTTP/1.6 501 Unsupported method ('POST') (text/html)

= 91 484062985 99.2 B HTTP)6 POST /: call HTTP/1.1 cation/x-protobut

70462 991.484923306 192.168. 162.168.99.2 HTTP 399 HTTP/1 nsupported method ('POST') (text/html)
76530 992.483719425 192.168. 192.168.99.254 HTTP 406 POST /apifapp/call HTTP/1.1 (application/x-protobuf)
78533 992.484544176 192. .99, 192.168.99.2 HTTP 390 HTTP/1.6 581 Unsupported method ('POST') (text/html)
1048.. 1590.1445388.. 192.168. 192.168.99.254 HTTP 406 POST /apifapp/call HTTP/1.1 (application/x-protobuf)
1048.. 1590.1450970.. 192.168. 192.168.99.2 HTTP 399 HTTP/1.8 501 Unsupported method ('POST') (text/html)
1048.. 1591.0455681. 192, .99, 192.168.99.254 HTTP 486 POST /api/app/call HTTP/1.1 (application/x-protobuf)
1048.. 1591.0462935.. 192.168. 192.168.99.2 HTTP 399 HTTP/1.6 501 Unsupported method ('POST') (text/html)
1049.. 1591.8855224.. 192.168.99. 192.168.99.254 HTTP 496 POST /apifapp/call HTTP/1.1 (application/x-protobuf)

Client-side attack: sweets

~ Hypertext Transfer Protocol
v POST /api/app/call HTTP/1.1\r\n
Content-Type: application/x-protobuf; charset=utf-8\rin
Accept-Encoding: gziphrin
User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.0.4; ARMZ-MXGDQ Build/UNKNOWN)“r\n

Host: fr- .aw.atos.net\rin
Connection: Keep-Alivehrin

» Content-Length: 9ivrin
\rwn
[Full request URI: http://fr- -aw.atos.net/apisapp/call]
[HTTP request 1/1]
[Response in Trame: 70533]

File Data: 91 bytes
+ Media Type

Opportunities B

Remember the Android version is 4.0.4:

B Some apps perform web requests — JavaScript Interface
RCE

B Other request XML files — XXE attacks
B And all other CVE to replay!

Spotted API

POST [[EPI/app/Call]HTTP/1.1

Content-Type: application/x-protobuf; charset=utf-8

Accept-Encoding: gzip

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.8.4; ARM2-MXGDQ Build/UNKNOWN)
Host: fr- .aw.atos.net

Connection: Keep-Alive

Content-Length: 91

0

@dd5ee7T410efe36e5eT12d14472d117e890TR5432c6e37c64d558dat3cch8bh5. .. .FR".fr_FR....*...2.HTTP/1.8 581 Unsupported method ('PO!
Server: SimpleHTTP/@.6 Python/2.7.15

Date: Thu, 30 Aug 2018 11:57:36 GMT

Connection: close

Content-Type: text/html

<head>

<title>Error response</title>

</head>

<body>

<hl=Error response</hl>

<p>Error code 501

<p>Message: Unsupported method ('POST')

<p>Error code explanation: 5081 = Server does not support this operation.
</body>

Very similar to mobile app API calls! But no “OAuth” token?!

API: “Mobile app” VS “Carslothers...”

Mobile APP

open and close car door
start/stop the clim

all of these actions are
authentified — OAuth, etc.
uses HTTPS — well
verified by default on new
Android device

Cars and others

open and close car door
start/stop the clim
talks on HTTP

sometimes use only SMS
messages

use only identification

payload are sometimes
encrypted with a same
shared key

rare cases: mutual
authentication (expecially
on external dongles)

Interception in a parking station

> 10 board computers collected in the fake base station

Read more about this

B Our blog post: Hunting mobile devices endpoints

B More stuff could be found on other systems...

B Other case: The ComboBox in BMW
https://www.heise.de/ct/artikel/Beemer-Open-Thyself-

Security-vulnerabilities-in-BMW-s-ConnectedDrive-
2540957 .html

The futur

XTRX

B mPCl-e
M perfect for embeded radio

B osmoTRX is not well
supported at the moment,
but patience!

M fit perfectly on APU2, UP2
and Orange PI rk3399
boards

APU2 example

E} conclusion

Conclusion .=

B Alot of IoT devices use the mobile network to be managed
in remote

B Mobile interception techniques could be applied on loT
device

B Techniques are accessible — equipments, tools and tricks
are not so expensive

B Modmobmap and Modmobjam — when physical accesses
are not possible on targeted devices

B But some devices only have a 3G or a LTE stack

B Interceptions on UMTS and LTE requires a custom (U)SIM
(unless there is a missing auth check in BB)

B Hardware hacking — complementary but also a last
ressort sometimes

Downloads

B Modmobmap:

B https://github.com/Synacktiv/IModmobmap
B Modmobjam:

B https://github.com/Synacktiv/Modmobjam

Thanks =)

B Joffrey Czarny (@_SnOrkY)

B Priya Chalakkal (@priyachalakkal)

B Rachelle Boissard (@rachelle_off)

B Troopers staff (@WEareTROOPERS)

B Guillaume Delugré (@lapinhibOu) — spotting few mistakes
in slide 3

B And of course — You all ;)

. ANY QUESTIONS? .

THANK YOU FOR YOUR ATTENTION,

1sSYNACKTIV

I MDIGITAL SECURITY

	Introduction
	Requirements
	Attracting mobile devices
	Capturing mobile data of a famous intercom in France
	Hard way
	Other interesting targets
	Other interesting targets
	The futur
	conclusion

