5s SYNACKTIV

IEDIGITAL SECURITY

Modmobmap
The modest mobile networks mapping tool

By Sébastien Dudek

BeeRumP

May 31st 2018

Introduction HE

B Modmobmap (sounds like “Bimbimpbap”): Modest Mobile
networks Mapping tool

B Used to map 2G/3G and 4G networks (maybe more) in
real live

B Uses a set of tricks (including the cheapest) to map cells

Context

Where can | use this tool? .=

Cell towers discovery

B have a list and description of surrounding towers

B spot rogue base stations (mature list required!)

Restricted/smart/magic jamming

Where can | use this tool?

Cell towers discovery

Restricted/smart/magic jamming

B replace the heavy & noisy & cumbersome jammer (or
portable ones with weak signals)

B avoid commercial jamming device reworking (bands
disabling)

Remember: monitoring with holy relics]

Old Nokia phone have a net monitor mode that could be
enabled via FBus or MBUS access.

Tools

B Gnokii, Gammu and
others: activate monitor

w O =

, . oNB. & o=

mode, interact with the : 3 =2
L) FBUS TX = D

phone, and capture trace BL{S‘FBUSRX — o

logs.

B DCT3-GSMTAP: evolution
of Gammu, capture of
GSM Um and SIM-ME via
GSMTAP pseudo-header
format.

&3 m
[

Existing tool HE

E Radio Type: GSM \ 4 B

a +
Q. Rue Voltaire, Le Kremiin-Bicétre, Fi X Latitude: 48 817840
> Longtude: 2.361688 -
; Range: 1021 m 2
Search Cell Towers %, o
e ¥ 156 measureme
16 Created: 2013-05-31T08:59:06.000Z
MnC Updated: 2018-04-21T16:01:18.000Z

o Lo :

Search

OpencCelllD example

But very few information... could be used as a database for
spotting rogue base stations. But useless for jamming attacks

Thing we wanna do for 3G, 4G and more

1
6
-74
£
34
32

513DCS |2
518DCS
609DCS |2
744DCS| 2
976

978

979

982

984

986

1011

1012

Lo oo o@u w e

w o

OsmocomBB cell monitor

SN)

EDGITAL SECURITY

State of the Art

Public tools .=

Recorded mobile towers

B OpenCellid: Open Database of Cell Towers
B Gsmmap.org
B and so on.

Live scanning tools

Public tools .=

Recorded mobile towers

B OpenCellid: Open Database of Cell Towers

B Gsmmap.org
B and so on.

But these solutions don’t map in live and do not give precise
information about cell towers.

Live scanning tools

Livescanningtools

Public tools HE
H

Recorded mobile towers
Live scanning tools

B for 2G cells:

B Gammu/Wammu, DCT3-GSMTAP, and others
B OsmocomBB via cell_log application

B for 3G, 4G and more;:

B only tricks: use of exposed DIAG interface —decoding
—GSMTAP pseudo-header format

B SnoopShitch: not reflexible, but could be reworked for our
purposes ;)

Methods to capture cells information

Possible methods are:
B Software-Defined Radio
B Exposed diagnostic interfaces
B Use of Android RIL

Software-Defined Radio

Existing tools:
B Airprobe or GR-GSM
B OpenLTE: LTE_fdd_dl scan
B srsLTE with srsUE

Software-Defined Radio

Existing tools:
H Airprobe or GR-GSM
B OpenlLTE: LTE_fdd_dI_scan
M srsLTE with srsUE

No 3G tools to capture cell information.

Exposed diagnostic interface HE
N

W Diagnostic interface enabled:

m On old phones and 3G sticks like the Icon 255 that expose
it by default

B enabling DIAG ourselves: e.g for some LG devices via
/sys/devices/platform/lg_diag_cmd/diag_enable

B Chips used for development

B Interfaces kept enabled in production by error (e.g via
custome bootmodes —CVE-2016-8467)

B Existing tools:

B xgoldmon for X-Gold Infineon Basebands
B diag-parser for exposed Qualcomm DIAG interfaces

Ihttps://events.ccc.de/congress/2011/Fahrplan/attachments/2022_11ccc-
gcombbdbg.pdf

Making a development environment

B Good alternative

B Could work with almost all bands we want
B a little expensive: almost 300€

B requirements:

EC20 LTE modem PCengines APU2

(Funny story about EC20) HE
H

B Seen at 33c3 by Harald Welte? —sthe modem runs an OE
base Linux distribution

M It's also possible to have a shell via the AT command
AT+QLINUXCMD:

echo —e 'AT+QLINUXCMD="/sbin/getty —L ttyGSO 115200 console”\r\n’' > /dev/ttyUSB2
microcom /dev/ttyUSB1

OpenEmbedded Linux 9615—cdp ttyGSO
msm 20160923 9615—cdp ttyGSO
9615—cdp login: root

Password: oelinux123
root@9615—cdp:~#

Zhttp git.gnumonks.org/laforge-
slides/plain/2016/cellular_modems_33c3/33c3modems.html

RIL on Android

B Daemon forwards
commands/messages:
application =sVendor RIL

B vendor library is prorietary
and vendor specific

B vendor library knows how
to talk to modem:

H classic AT

B QMI for Qualcomm

B (old?) Samsung IPC
Protocol

B and so on.

yyyyyyyy

Packet Driver
PPP, for example

ServiceMode as an alternative

ServiceMode on Android

B Usually activated by typing

a secret code

B Gives interesting details of

current cell:

B implicit network type

B used band

B reception (RX/DL)
or/and transmission
(TX/UP) (E/U)ARFCN
(Absolute Radio
Frequency Channel
Number)

B PLMN (Public Land
Mobile Network) number

B and so on.

RRC:IDLE, Band:1
PLMN:208-11

RX:10762 RI:-84 CID:a21¢c5
TX:9812 Eclo:-2 RSCP:-86
L1:PCH_Sleep PSC:507 DRX:128
SERVICE : LIMITED

Speech VER : FR FR FR
therm: 111 LNA: 0

SIB19 None

PA STATE : 0 (APT), HDET : 0
NETWORK : UNBLOCK

IMEI Certi: PASS, 1

Unknown

ServiceMode in Samsung

Samsung ServiceMode in brief |
N

*#0011+# secret code handled by ServiceModeApp_RIL
ServiceModeApp activity

ServiceModeApp —IPC connection
—SecFactoryPhoneTest SecPhoneService

ServiceModeApp starts the service mode
—invokeOemRilRequestRaw() through SecPhoneService
(send RIL command RIL_REQUEST_OEM_HOOK_RAW)

ServiceModeApp process in higher level ServiceMode
messages coming from RIL.

Two good places exist: RIL library independent of Vendor RIL
library implementation, or use invokeOemRIilRequestRaw()

Getting SM messages: the lazy way

Ask to our best friend —logcat
shell@klte:/ $ logcat

|/ ServiceModeApp_RIL(1542): in QUERT_SERVM DONE

| /ServiceModeApp_RIL(1542): size of result : 1700

| /ServiceModeApp_RIL(1542): Line 0 : RRC:IDLE, Band:1_

| /ServiceModeApp_RIL(1542): Line 1 : PLMN:208—20_

| /ServiceModeApp_RIL(1542): Line 2 : RX:10639 RI:—70 CID:1fc09bd_
| /ServiceModeApp_RIL(1542): Line 3 TX:9689 Eclo:—4 RSCP:.—74_

| /ServiceModeApp_RIL(1542): Line 4 L1:PCH_Sleep PSC:83 DRX:64_
| /ServiceModeApp_RIL(1542): Line 5 : SERVICE : LIMITED_

| /ServiceModeApp_RIL(1542): Line 6 : Speech VER : FR FR FR_

| /ServiceModeApp_RIL(1542): Line 7 : therm: 111 LNA: 0 _

| /ServiceModeApp_RIL(1542): Line 8

| /ServiceModeApp_RIL(1542): Line 9

| /ServiceModeApp_RIL(1542): Line 1

| /ServiceModeApp_RIL(1542): Line 1

: SIB19 Received_

: PA STATE : 0 (APT), HDET : O_
0 : NETWORK : UNBLOCK_
1 IMEI Certi: PASS, 1_

Those messages could be then processed to get our current
cell information.

L SECURITY

Make a tool out of it

What do | need?

At least a phone supporting ServiceMode!

Bonjouuur
les
GUEUX!

Few contraints to resolve

“KTHX! But...

how to support other operators different from your own SIM
card? Do you need a different SIM card for each operator?

how to enumerate cells a MS (Mobile Station) is supposed
to see?

Few contraints to resolve HE

“KTHX! But...:

how to support other operators different from your own SIM
card? Do you need a different SIM card for each operator?

how to enumerate cells a MS (Mobile Station) is supposed
to see?

The DFR technique!

DFR technique

D.F.R: “D” for Dirty, “F” for
Fuzzy, “R” for Registration

The camping concept in brief

Let's remember 3GPP TS 43.022, ETSI TS 125 304...

B When selecting a PLMN —MS looks for cells satisfying few
conditions (cell of the selected PLMN, not barred, pathloss
between MS and BTS below a thresold, and so on.)

B Cells are checked in a descending order of the signal
strength

H If a suitable is found —MS camps on it and tries to register

The camping concept in brief |
N

Let's remember 3GPP TS 43.022, ETSI TS 125 304...

B When selecting a PLMN —MS looks for cells satisfying few
conditions (cell of the selected PLMN, not barred, pathloss
between MS and BTS below a thresold, and so on.)

M Cells are checked in a descending order of the signal
strength

M If a suitable is found —MS camps on it and tries to register

Verified through DIAG and ServiceMode

If registration fails —MS camps to another cell until it can
register —verified via DIAG and ServiceMode

Automate the DFR technique with AT]
commands |

Android phones often expose a modem interface (e.g.
/dev/smd0)

127|shell@klte :/ $ getprop rild.libargs
—d /dev/smd0

It is possible to:

B set network type: AT"SYSCONFIG

B list PLNM and select a PLMN: AT+COPS
—requires root privileges

We mix all techniques together

Don’t forget...

Fhaiparop Addier

Here is the frankenstein: modmobmap

User Linux terminal

Dev. Router

i0S | Utils

DIAG

,/'

[service :\ (“‘ [diag
! Mode | “_ 2) \ parsing /

Demo with a Galaxy S5 phone

o python modmobmap.py -m s

« cell detected [CellID/PCI-D
etwork type=4G

PLMN=151515-1515
B;
Downlink EARFCN=6
Found 5 operator(s)
{u'20810': u'F SFR', u'20820': u'F-Bouygues Telecom', u'20815': u'Free', u'20801': u'Orange F', u'20811'
i Uu'SFR Home 3G'}

cell detected [CellID/PCI-DL_freq (f0e02-10787)]
k type=3G

nlink UARFCN:
Uplink UARFCN=9¢

cell detected [CellID/PCI-DL -
yrk type=4G
M= 10

link EARFCN=64
1 cell detected [CellID/PCI-D (298-630
k type=4G
10

link EARFCN=6300

i cell detected [CellID/PCI-DL_f
yrk type=4G

8-10

[CellID/PCI-D

Band=7

Tink EARFCN=3350 24

I AL SEUURTY

Conclusion

modmobmap:
M is a cheap way to scan mobile cells

M supports 2 useful interfaces:

B ServiceMode;

B GSMTAP captures:
B host DIAG (could be easily extended for guest DIAG);
B srsLTE and OpenLTE captures.

B the source code will be published in Github soon!

B any ideas and contribz are welcomed!

AVEZ-VOUS .
DES QUESTIONS ? .

MERCI DE VOTRE ATTENTION,

1sSYNACKTIV

I MDIGITAL SECURITY

	Introduction
	Context
	State of the Art
	ServiceMode as an alternative
	Make a tool out of it

