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me@JSecIN:/ $ whoami

 Gaetan Ferry 

 @mabo^W Not on twitter

 Security expert @Synacktiv :

 Offensive security company : pentest, red team, 
reverse/exploit…

 Pentest team peon:

 1 me / 17 pentester / 41 ninjas

 Breaking things since 2012

 Web, internal, external, IOT, indus, cloud



  

WE WANT YOU FOR OUR NINJA ARMY !



  

INTRODUCTION



  

Why this presentation?

 Why not?

 Obfuscation is an undervalued domain
■ Usefulness often discussed
■ Defined as security by obscurity

 Therefore abandoned

 Therefore unknown
→ We want to redeem obfuscation



  

What is in this presentation?

 Objectives of a proper obfuscation

 Details of classic obfuscation patterns

 Implementation with / for Python

 Examples and …

…demos (pray demo gods)



  

WHAT IS OBFUSCATION ?



  

A bit of theory

Let P be the set of all programs and T a set of transformations such as:

T
i
 : P → P

T
i
 is an obfuscation transformation if and only if:

- out(T
i
(P

k
)) == out(P

k
)

- analysis of T
i
(P

k
) is harder than analysis of P

k

T
i
 is considered efficient if the knowledge of T

i
(P

k
) is equivalent to having a black-box oracle 

of P
k.
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This is not what we are doing

 Obfuscation does not stand well theory

 Theoretical results are demoralizing
 In general cases obfuscation is impossible
 Some exceptions: point functions

 Let's go with a more pragmatic approach



  

A more pragmatic approach

 Process of complicating programs
 Take a beautiful well written program
 Transform it in some way
 Retrieve an obscure ugly program

 Two rules to follow
 Resulting program is semantically equivalent
 More difficult to analyze and understand



  

A more pragmatic approach

 Process of complicating programs
 Take a beautiful well written program
 Transform it in some way
 Retrieve an obscure ugly program

 Two rules to follow
 Resulting program is semantically equivalent
 More difficult to analyse and understand



  

Why do you want obfuscation?

 Useful for good and bad guys
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Why do you want obfuscation?

 Useful for good and bad guys

Protect industrial secret
Discourage hackers who open the thing

Bypass sandbox / antivirus detection
Prevent reverse engineering by the good guys



  

LET'S OBFUSCATE THINGS



  

How to complicate a program?

 Remove as much information as possible

 Three main directions:
 Abstractions
 Data
 Control flow

 We need to obfuscate each kind



  

How to complicate a program?

Abstractions

Data

Control flow



  

LET'S OBFUSCATE ABSTRACTIONS



  

Program abstractions

 Abstractions help understand programs

→ Imagine a program without proper function names or 
convoluted class hierarchy !

 Giveaway much of the program semantic
 Division in semantic blocks
 Role of the blocks

 Sensitive abstractions:
 Variables
 Functions
 Classes



  

Names obfuscation

 First step of a successful obfuscation
 Remove meaningful names from the code
 Replace with random or unrelated ones

 This information is unrecoverable!   \o/

 EZ as 123:
 Search for all declarations functions, variables, class
 Replace at each usage location



  

Names obfuscation
def power(number, exponent) {

count = number
while (exponent > 1) {

count = count * number
exponent = exponent - 1

}
return count

}

power(2, 10)

Definition
Usage

def toast(number, exponent) {
count = number
while (exponent > 1) {

count = count * number
exponent = exponent - 1

}
return count

}

toast(2, 10)

def toast(bread, butter) {
salad = bread
while (butter > 1) {

salad = salad * bread
butter = butter - 1

}
return salad

}

toast(2, 10)



  

Going further

 Does not seem sufficient
 Still leaking information
 Program partitioning unchanged

 We should try to break things

 Ideas:
 Function inlining
 Merging / Splitting

 Warning: Beware of introspection calls!



  

Function merging
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

def mult(a, b) {
count = 0
while (b > 0){

count += a
b -= 1

}
return count

}

A = 2
B = 3

C = add(A,B)
D = mult(C,A)



  

Function merging
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

def mult(a, b) {
count = 0
while (b > 0){

count += a
b -= 1

}
return count

}

def toast(a, b, c, d, e) 
{

if (e) {
count = a
while (b > 0){

count += 1
b -= 1

}
return count

} else {
count = 0
while (d > 0){

count += c
d -= 1

}
return count

}
}

A = 2
B = 3

C = add(A,B)
D = mult(C,A)

A = 2
B = 3

C = toast(A,B,B,A,true)
D = toast(A,C,C,A,false)



  

Function merging - smarter
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

def mult(a, b) {
count = 0
while (b > 0){

count += a
b -= 1

}
return count

}

def toast(a, b, e) {
if (e) {

count = a
add = 1

} else {
count = 0
add = a

}
while (b > 0){

count += add
b -= 1

}
return count

}

A = 2
B = 3

C = add(A,B)
D = mult(C,A)

A = 2
B = 3

C = toast(A,B,true)
D = toast(C,A,false)



  

(disappointing) DEMO



 

Before

After



  

LET'S OBFUSCATE DATA



  

Program data

 All programs contain data:
 Numbers, strings, arrays, etc

 Often (always) discloses important information:
 Status / debug messages
 Important constants (MD5, AES S-Box, etc)

 We want to hide those nasty values !
 In our example: integers



  

Program data

 All programs contain data:
 Numbers, strings, arrays, etc

 Often (always) discloses important information:
 Status / debug messages
 Important constants (MD5, AES S-Box, etc)

 We want to hide those nasty values !
 In our example: integers

USE OPAQUE PREDICATES !



  

Opaque predicates and values

 One of the core concepts of obfuscation

 We want to build expressions for which:
 Value is known at obfuscation time
 At run time value is hard to determine

 When value is a boolean it's a predicate



  

Opaque predicates – naive idea



  

Opaque predicates – naive idea

 Open a mathematics course book

 Ctrl + F “demonstrate that“

 Profit

 Examples:
 (n² + n) % 2 = 0
 If n is odd : n² % 8 = 1
 (3 (2n + 2) + 1) % 8 = 2



  

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}
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Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

def add(a, b){
count = a
n = rand()
while (b > (n² + n) % 2){

count += n² % 8
b -= n² % 8

}
return count

}



  

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

def add(a, b){
count = a
n = rand() * 2 + 1
while (b > (n² + n) % 2){

count += n² % 8
b -= n² % 8

}
return count

}

???



  

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

def add(a, b){
count = a
n = rand() * 2 + 1
while (b > (n² + n) % 2){

count += n² % 8
b -= n² % 8

}
return count

}

???
def add(a, b){

count = a
while (b > (a² + a) % 2){

n = count*2+1
count += (n)² % 8
b -= n² % 8

}
return count

}



  

Opaque predicates – naive idea

 Problem:

Smart cat is smart! Smart cat knows mathematics!

 Attacking those predicates is easy:
 Build a collection of mathematics results
 Pattern match known relations
 Replace

 We can do better



  

Array aliasing

 Let's build our own mathematical results
 Create an array
 Decide properties
 Initialize the array respecting the properties

 Then use the properties like previously



  

Array aliasing

 Example:

  3 == A[1]%A[4]      A[2] == A[5]%A[4]

  1 == A[5]%A[8]      A[9] == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]

== 3 mod 5 == 1 mod 4



  

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]



  

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

count = a
while (b > A[5]%A[3]-A[1]%A[3]){

count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]



  

Array aliasing

 Still insufficient:
 Global array is static
 Attacker can globally replace values

 We need to bring indecision in!

 Idea: change the array during the program’s execution
 Hard! (e.g. How to know the state in function bodies?)



  

Array aliasing

 Still insufficient:
 Global array is static
 Attacker can globally replace values

 We need to bring indecision in

 Idea: change the array during the program’s execution
 Hard! (e.g. How to know the state in function bodies?)
 But not if you keep the properties



  

Array aliasing

 Example:

  3 == A[1]%A[4]      A[2] == A[5]%A[4]

  1 == A[5]%A[8]      A[9] == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]
== 3 mod 5 == 1 mod 4

+ A[3] + A[8]



  

Array aliasing

 Example:

  3 == A[1]%A[4]      A[2] == A[5]%A[4]

  1 == A[5]%A[8]      A[9] == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]
== 3 mod 5 == 1 mod 4

+ A[3] + A[8]

A = [25,58,3,5,5,33,17,8,4,1]

OK



  

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}
add(2,3)

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

count = a
while (b > A[5]%A[3]-A[1]%A[3]){

count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
add(2,3)

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]



  

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}
add(2,3)

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

A[0]=A[4]
count = a
while (b > A[5]%A[3]-A[1]%A[3]){

A[4] += A[0]%A[8]
count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
A[5]=(A[1]+A[7])%A[4]+A[7]
add(2,3)

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

count = a
while (b > A[5]%A[3]-A[1]%A[3]){

count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
add(2,3)



  

Array aliasing

 Results
 Data now changes at each run
 Function add change

 Guessing the value of add(2,3) 
now requires analyzing more 
than just the add function

 Result might change at each 
call

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

A[0]=A[4]
count = a
while (b > A[5]%A[3]-A[1]%A[3]){

A[4] += A[0]%A[8]
count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
A[5]=(A[1]+A[7])%A[3]+A[7]
c = add(2,3)
A[5]=(A[1]+A[7])%A[3]+A[7]
D = add(2,3)
C == D ???
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}
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DEMO



 

Before

After



  

LET'S OBFUSCATE CONTROL FLOW



  

Control Flow Graph

 All programs make use of control instructions
– if, while, for, switch, etc

 They define a “Control Flow Graph”
 Composed of test and instructions blocks
 Define which instruction is executed when
 Wise attacker can deduce information of the CFG

 We want to obfuscate that



  

Control Flow Graph - Example
N = RAND()
C = 2
if (N % 2 == 0) {

while (N > 0) {
C = C * C
N = N - 1

}
} else {

C = 0
}
print(C)

N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)



  

Control Flow Graph – Naive (?)

 Ideas:
 Add dead branches
 Duplicate branches

 Increases the amount of code to analyze

→ Use opaque predicates !



  

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N % 4 == 0

C = 1
N % 2 == 0

N = -(- N + 1)
C = C² / C



  

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N % 4 == 0

C = 1
N % 2 == 0

N = -(- N + 1)
C = C³ / C



  

Control Flow Graph – Flattening

 Can we do better (i.e. destroy the graph) ?

 Yes! We can flatten the graph
 Technique called Chenxification after Chenxi Wang
 Improved by Lazlo & Kiss

 The idea:
 Replace the whole program by a big switch / case
 Put all instruction blocks in it
 Jump on blocks depending on a control value



  

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3  

1 3

N > 0 ? ctrl = 5 : ctrl = 4  

2

4 

5
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Control Flow Graph - Example
ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3  

0

1 3

N > 0 ? ctrl = 5 : ctrl = 4  

2
 
4

5



  

Control Flow Graph - Example
ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3  

0

1 3

N > 0 ? ctrl = 5 : ctrl = 4  

2
 
4

5

END

       

        123



  

DEMO



 

Before

After



  

PUTTING IT ALL TOGETHER



  

Putting it all together

 We have three obfuscation transforms

 We should be able to combine them
 Choose the correct order to maximize efficiency
 Use data obfuscation to mask flattening control
 Optionally iterate some transforms

 Keep in mind the performance impact
 The execution time can increase significantly
 The program size can explode
 Maybe necessary to target sensitive functions



  

Putting it all together

 Keep in mind the performance loss

SIZE TIME

FLATTENING + 100 % < +10 %

RENAMING +0 % +0 %

ARRAY 
ALIASING

x 10 +11 %



  

DEMO



 

Before

After



  

Conclusion

 We achieve a nice looking obfuscation
 Using somehow simple transforms

 But might not hold against advanced analysis
 In particular dynamic analysis

→ Debugging, Symbolic execution, etc

 What about dynamic obfuscation?
→ Self modifying programs, white box crypto, etc



  

Conclusion

 We achieve a nice looking obfuscation
 Using somehow simple transforms

 But might not hold against advanced analysis
 In particular dynamic analysis

→ Debugging, Symbolic execution, etc

 What about dynamic obfuscation?
→ Self modifying programs, white box crypto, etc



  

Thank you for your attention

ANY QUESTIONS ?
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