
When 2018/11/29
Where JSecIn
Who Gaetan Ferry
Why For fun!

Code Code Obfuscation 10**2+(2*a+3)%2Obfuscation 10**2+(2*a+3)%2

me@JSecIN:/ $ whoami

 Gaetan Ferry

 @mabo^W Not on twitter

 Security expert @Synacktiv :

 Offensive security company : pentest, red team,
reverse/exploit…

 Pentest team peon:

 1 me / 17 pentester / 41 ninjas

 Breaking things since 2012

 Web, internal, external, IOT, indus, cloud

WE WANT YOU FOR OUR NINJA ARMY !

INTRODUCTION

Why this presentation?

 Why not?

 Obfuscation is an undervalued domain
■ Usefulness often discussed
■ Defined as security by obscurity

 Therefore abandoned

 Therefore unknown
→ We want to redeem obfuscation

What is in this presentation?

 Objectives of a proper obfuscation

 Details of classic obfuscation patterns

 Implementation with / for Python

 Examples and …

…demos (pray demo gods)

WHAT IS OBFUSCATION ?

A bit of theory

Let P be the set of all programs and T a set of transformations such as:

T
i
 : P → P

T
i
 is an obfuscation transformation if and only if:

- out(T
i
(P

k
)) == out(P

k
)

- analysis of T
i
(P

k
) is harder than analysis of P

k

T
i
 is considered efficient if the knowledge of T

i
(P

k
) is equivalent to having a black-box oracle

of P
k.

A bit of theory

Let P be the set of all programs and T a set of transformations such as:

T
i
 : P → P

T
i
 is an obfuscation transformation if and only if:

- out(T
i
(P

k
)) == out(P

k
)

- analysis of T
i
(P

k
) is harder than analysis of P

k

T
i
 is considered efficient if the knowledge of T

i
(P

k
) is equivalent to having a black-box oracle

of P
k.

This is not what we are doing

 Obfuscation does not stand well theory

 Theoretical results are demoralizing
 In general cases obfuscation is impossible
 Some exceptions: point functions

 Let's go with a more pragmatic approach

A more pragmatic approach

 Process of complicating programs
 Take a beautiful well written program
 Transform it in some way
 Retrieve an obscure ugly program

 Two rules to follow
 Resulting program is semantically equivalent
 More difficult to analyze and understand

A more pragmatic approach

 Process of complicating programs
 Take a beautiful well written program
 Transform it in some way
 Retrieve an obscure ugly program

 Two rules to follow
 Resulting program is semantically equivalent
 More difficult to analyse and understand

Why do you want obfuscation?

 Useful for good and bad guys

Why do you want obfuscation?

 Useful for good and bad guys

Protect industrial secrets
Discourage hackers who open the thing

Why do you want obfuscation?

 Useful for good and bad guys

Protect industrial secret
Discourage hackers who open the thing

Bypass sandbox / antivirus detection
Prevent reverse engineering by the good guys

LET'S OBFUSCATE THINGS

How to complicate a program?

 Remove as much information as possible

 Three main directions:
 Abstractions
 Data
 Control flow

 We need to obfuscate each kind

How to complicate a program?

Abstractions

Data

Control flow

LET'S OBFUSCATE ABSTRACTIONS

Program abstractions

 Abstractions help understand programs

→ Imagine a program without proper function names or
convoluted class hierarchy !

 Giveaway much of the program semantic
 Division in semantic blocks
 Role of the blocks

 Sensitive abstractions:
 Variables
 Functions
 Classes

Names obfuscation

 First step of a successful obfuscation
 Remove meaningful names from the code
 Replace with random or unrelated ones

 This information is unrecoverable! \o/

 EZ as 123:
 Search for all declarations functions, variables, class
 Replace at each usage location

Names obfuscation
def power(number, exponent) {

count = number
while (exponent > 1) {

count = count * number
exponent = exponent - 1

}
return count

}

power(2, 10)

Definition
Usage

def toast(number, exponent) {
count = number
while (exponent > 1) {

count = count * number
exponent = exponent - 1

}
return count

}

toast(2, 10)

def toast(bread, butter) {
salad = bread
while (butter > 1) {

salad = salad * bread
butter = butter - 1

}
return salad

}

toast(2, 10)

Going further

 Does not seem sufficient
 Still leaking information
 Program partitioning unchanged

 We should try to break things

 Ideas:
 Function inlining
 Merging / Splitting

 Warning: Beware of introspection calls!

Function merging
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

def mult(a, b) {
count = 0
while (b > 0){

count += a
b -= 1

}
return count

}

A = 2
B = 3

C = add(A,B)
D = mult(C,A)

Function merging
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

def mult(a, b) {
count = 0
while (b > 0){

count += a
b -= 1

}
return count

}

def toast(a, b, c, d, e)
{

if (e) {
count = a
while (b > 0){

count += 1
b -= 1

}
return count

} else {
count = 0
while (d > 0){

count += c
d -= 1

}
return count

}
}

A = 2
B = 3

C = add(A,B)
D = mult(C,A)

A = 2
B = 3

C = toast(A,B,B,A,true)
D = toast(A,C,C,A,false)

Function merging - smarter
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

def mult(a, b) {
count = 0
while (b > 0){

count += a
b -= 1

}
return count

}

def toast(a, b, e) {
if (e) {

count = a
add = 1

} else {
count = 0
add = a

}
while (b > 0){

count += add
b -= 1

}
return count

}

A = 2
B = 3

C = add(A,B)
D = mult(C,A)

A = 2
B = 3

C = toast(A,B,true)
D = toast(C,A,false)

(disappointing) DEMO

Before

After

LET'S OBFUSCATE DATA

Program data

 All programs contain data:
 Numbers, strings, arrays, etc

 Often (always) discloses important information:
 Status / debug messages
 Important constants (MD5, AES S-Box, etc)

 We want to hide those nasty values !
 In our example: integers

Program data

 All programs contain data:
 Numbers, strings, arrays, etc

 Often (always) discloses important information:
 Status / debug messages
 Important constants (MD5, AES S-Box, etc)

 We want to hide those nasty values !
 In our example: integers

USE OPAQUE PREDICATES !

Opaque predicates and values

 One of the core concepts of obfuscation

 We want to build expressions for which:
 Value is known at obfuscation time
 At run time value is hard to determine

 When value is a boolean it's a predicate

Opaque predicates – naive idea

Opaque predicates – naive idea

 Open a mathematics course book

 Ctrl + F “demonstrate that“

 Profit

 Examples:
 (n² + n) % 2 = 0
 If n is odd : n² % 8 = 1
 (3 (2n + 2) + 1) % 8 = 2

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

def add(a, b){
count = a
n = rand()
while (b > (n² + n) % 2){

count += n² % 8
b -= n² % 8

}
return count

}

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

def add(a, b){
count = a
n = rand() * 2 + 1
while (b > (n² + n) % 2){

count += n² % 8
b -= n² % 8

}
return count

}

???

Opaque predicates – naive idea
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

(n² + n) % 2 = 0
 n² % 8 = 1

def add(a, b){
count = a
n = rand() * 2 + 1
while (b > (n² + n) % 2){

count += n² % 8
b -= n² % 8

}
return count

}

???
def add(a, b){

count = a
while (b > (a² + a) % 2){

n = count*2+1
count += (n)² % 8
b -= n² % 8

}
return count

}

Opaque predicates – naive idea

 Problem:

Smart cat is smart! Smart cat knows mathematics!

 Attacking those predicates is easy:
 Build a collection of mathematics results
 Pattern match known relations
 Replace

 We can do better

Array aliasing

 Let's build our own mathematical results
 Create an array
 Decide properties
 Initialize the array respecting the properties

 Then use the properties like previously

Array aliasing

 Example:

 3 == A[1]%A[4] A[2] == A[5]%A[4]

 1 == A[5]%A[8] A[9] == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]

== 3 mod 5 == 1 mod 4

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

count = a
while (b > A[5]%A[3]-A[1]%A[3]){

count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]

Array aliasing

 Still insufficient:
 Global array is static
 Attacker can globally replace values

 We need to bring indecision in!

 Idea: change the array during the program’s execution
 Hard! (e.g. How to know the state in function bodies?)

Array aliasing

 Still insufficient:
 Global array is static
 Attacker can globally replace values

 We need to bring indecision in

 Idea: change the array during the program’s execution
 Hard! (e.g. How to know the state in function bodies?)
 But not if you keep the properties

Array aliasing

 Example:

 3 == A[1]%A[4] A[2] == A[5]%A[4]

 1 == A[5]%A[8] A[9] == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]
== 3 mod 5 == 1 mod 4

+ A[3] + A[8]

Array aliasing

 Example:

 3 == A[1]%A[4] A[2] == A[5]%A[4]

 1 == A[5]%A[8] A[9] == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]
== 3 mod 5 == 1 mod 4

+ A[3] + A[8]

A = [25,58,3,5,5,33,17,8,4,1]

OK

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}
add(2,3)

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

count = a
while (b > A[5]%A[3]-A[1]%A[3]){

count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
add(2,3)

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]

Array aliasing
def add(a, b){

count = a
while (b > 0){

count += 1
b -= 1

}
return count

}
add(2,3)

0 == A[5]%A[3] - A[1]%A[3]
1 == A[4]%A[8]
1 == A[0]%A[8]

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

A[0]=A[4]
count = a
while (b > A[5]%A[3]-A[1]%A[3]){

A[4] += A[0]%A[8]
count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
A[5]=(A[1]+A[7])%A[4]+A[7]
add(2,3)

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

count = a
while (b > A[5]%A[3]-A[1]%A[3]){

count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
add(2,3)

Array aliasing

 Results
 Data now changes at each run
 Function add change

 Guessing the value of add(2,3)
now requires analyzing more
than just the add function

 Result might change at each
call

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

A[0]=A[4]
count = a
while (b > A[5]%A[3]-A[1]%A[3]){

A[4] += A[0]%A[8]
count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
A[5]=(A[1]+A[7])%A[3]+A[7]
c = add(2,3)
A[5]=(A[1]+A[7])%A[3]+A[7]
D = add(2,3)
C == D ???

Array aliasing

 Results
 Data now change at each run
 Function add change

 Guessing the value of add(2,3)
now require analyzing more
than just the add function

 Result might change at each
call

A = [17,53,3,5,1,8,25,33,4,1]
def add(a, b){

A[0]=A[4]
count = a
while (b > A[5]%A[3]-A[1]%A[3]){

A[4] += A[0]%A[8]
count += A[4]%A[8]
b -= A[0]%A[8] }

return count
}
A[5]=(A[1]+A[7])%A[3]+A[7]
c = add(2,3)
A[5]=(A[1]+A[7])%A[3]+A[7]
D = add(2,3)
C == D ???

DEMO

Before

After

LET'S OBFUSCATE CONTROL FLOW

Control Flow Graph

 All programs make use of control instructions
– if, while, for, switch, etc

 They define a “Control Flow Graph”
 Composed of test and instructions blocks
 Define which instruction is executed when
 Wise attacker can deduce information of the CFG

 We want to obfuscate that

Control Flow Graph - Example
N = RAND()
C = 2
if (N % 2 == 0) {

while (N > 0) {
C = C * C
N = N - 1

}
} else {

C = 0
}
print(C)

N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

Control Flow Graph – Naive (?)

 Ideas:
 Add dead branches
 Duplicate branches

 Increases the amount of code to analyze

→ Use opaque predicates !

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N % 4 == 0

C = 1
N % 2 == 0

N = -(- N + 1)
C = C² / C

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

N % 4 == 0

C = 1
N % 2 == 0

N = -(- N + 1)
C = C³ / C

Control Flow Graph – Flattening

 Can we do better (i.e. destroy the graph) ?

 Yes! We can flatten the graph
 Technique called Chenxification after Chenxi Wang
 Improved by Lazlo & Kiss

 The idea:
 Replace the whole program by a big switch / case
 Put all instruction blocks in it
 Jump on blocks depending on a control value

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3

1 3

N > 0 ? ctrl = 5 : ctrl = 4

2

4

5

Control Flow Graph - Example
N = RAND()
C = 2

N % 2 == 0

N > 0

C = C * C
N = N - 1

C = 0

print(C)

ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3

1 3

N > 0 ? ctrl = 5 : ctrl = 4

2

4

5

Control Flow Graph - Example
ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3

0

1 3

N > 0 ? ctrl = 5 : ctrl = 4

2

4

5

Control Flow Graph - Example
ctrl = 0

Switch(ctrl)

N = RAND()
C = 2
ctrl = 1

C = 0
ctrl = 4

C = C * C
N = N – 1
ctrl = 2

print(C)
ctrl = 123

N%2=0 ? ctrl = 2 : ctrl = 3

0

1 3

N > 0 ? ctrl = 5 : ctrl = 4

2

4

5

END

 123

DEMO

Before

After

PUTTING IT ALL TOGETHER

Putting it all together

 We have three obfuscation transforms

 We should be able to combine them
 Choose the correct order to maximize efficiency
 Use data obfuscation to mask flattening control
 Optionally iterate some transforms

 Keep in mind the performance impact
 The execution time can increase significantly
 The program size can explode
 Maybe necessary to target sensitive functions

Putting it all together

 Keep in mind the performance loss

SIZE TIME

FLATTENING + 100 % < +10 %

RENAMING +0 % +0 %

ARRAY
ALIASING

x 10 +11 %

DEMO

Before

After

Conclusion

 We achieve a nice looking obfuscation
 Using somehow simple transforms

 But might not hold against advanced analysis
 In particular dynamic analysis

→ Debugging, Symbolic execution, etc

 What about dynamic obfuscation?
→ Self modifying programs, white box crypto, etc

Conclusion

 We achieve a nice looking obfuscation
 Using somehow simple transforms

 But might not hold against advanced analysis
 In particular dynamic analysis

→ Debugging, Symbolic execution, etc

 What about dynamic obfuscation?
→ Self modifying programs, white box crypto, etc

Thank you for your attention

ANY QUESTIONS ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75

