
Through the SMM-Glass

And a vulnerability found there.

Bruno (@BrunoPujos)

November 18, 2019



Introduction

”It’s a poor sort of memory that only works backwards”



2/28

Introduction

The UEFI/BIOS is stored on a (SPI) flash.

It is executed before the OS and initializes SMM.

Main interest for an attacker:

Persistence even after OS reinstall.

Invisibility to the OS.

In theory protected once the BIOS give the execution to

the bootloader.

Wait…SMM ?



3/28

SMM

SystemManagementMode

An Intel Mode…”Ring -2”

A kind of weird duplicate of all

the other modes...

Initialized during the UEFI boot.

Its code is part of the UEFI firmware.

Used for management and protection of the firmware.

In practice almost the same kind of vulnerabilities than in

kernel, except no protections, everything in physical…



4/28

SMI#

System Management Interrupt (SMI)

Interrupt which make the CPU core switch to SMM.

Different kinds of SMI : Timer, USB, …

SoftWare SMI (SWSMI)

SMI triggered by IOPort 0xb2 (Advanced Power

Management Control).

Standard way of communication between the OS & SMM.

Data transition is code dependent: registers, memory, …



5/28

SMRAM

Initialized during the PEI &

DXE phases.

Protected from:

”normal” access, protected

by the SMRRs (MSR)

DMA access

…

Map of SMRAM

One SMBASE by CPU Core

SMBASE + 0x8000: SMM entrypoint, after a SMI is triggered,

should dispatch to handlers.

SMBASE + 0xFC00: Saved State of the previous mode, also

contains the SMBASE.



6/28

UEFI Services & Protocols

UEFI is composed of several phases, the main one is the

Driver eXecution Environment (DXE).

The DXE phase is composed of hundreds of drivers.

All drivers are provided with services: a set of functions,

configuration tables, …

Drivers can register protocols, identified by a GUID for

sharing functionality (functions, data, …).

In practice it is just a pointer link to a GUID which can be

retrieved by other drivers.

Some are well known and documented, some depend on

the constructors (OEM, IBV).



6/28

Summary

1 Introduction

2 Callout of SMRAM

3 Exploitation

4 Conclusion



Callout of SMRAM

”You may call it nonsense if you like”



8/28

SmmOEMInt15

Was reversing the firmware of my Lenovo P51s.

Found a driver named SmmOEMInt15.

Really small: 7 KB and 21 functions.

The driver registers a SWSMI handler:
// [...]
res = gSmst->SmmLocateProtocol(&UnkProtocolGuid, 0i64, &unk_protocol);
// [...]
swsmi_number = 0xFFFFFFFF;
res = (*unk_protocol)(&swsmi_oemint15_guid, &swsmi_number);
// [...]
// swsmi_handler is the handler function
EfiSmmSwDispatch2->Register(SmmSwDispatch2, swsmi_handler,

&swsmi_number, &handle_swsmi);
// [...]



9/28

SWSMI Number

SmmSwDispatch2 is a known protocol for registering SWSMI

handlers.

Unknown protocol used for getting the SWSMI number,

with GUID: FF052503-1AF9-4AEB-83C4-C2D4CEB10CA3.

Registered by the driver SystemSwSmiAllocatorSmm.

Allow to get a SWSMI number not registered and to

associate it with a GUID.

Install a configuration table in normal world with GUID:

7E791691-5752-4392-B888-EFF9C74F5D77.

This table contains a pointer to a list of the registered

SWSMI, with the GUID and the number.

Can be retrieved and enumerated easily from a UEFI shell.



10/28

SmmOEMInt15 SWSMI handler

The SWSMI handler start by getting the content of RSI

from the saved state (user input).

This value is then used as a pointer on a structure.

The first two bytes are used as an enum for a switch

calling different handlers.

I did a quick overview of the different handlers and then I

arrived to the handler 0x3E00.



11/28

Handler 0x3E00

The handler gets two other fields from the RSI struct and

combines them to create a pointer:

controlled = ((16 * *(rsi_struct + 0x1C)) + *(rsi_struct + 0x10));

Then it calls an internal functions with the following code:

if (! *(controlled + 2)) {
// [...]
result = gBootServices->LocateHandleBuffer(

ByProtocol, &stru_1720, 0i64, &NoHandles, &Buffer);
// [...] // if result is an error just return

}



12/28

The vulnerability

Callout of SMRAM

The BootServices are services located in ”normal” world.

We can control the address of LocateHandleBuffer.

A simple callout of SMRAM.

In the past (∼2 years ago) we could just have put a

shellcode in normal world and get SMM code execution.

But SMM_CODE_CHK_EN was introduced.

SMM_CODE_CHK_EN

SMM_CODE_CHK_EN is a MSR which can be locked.

Equivalent of SMEP for SMM.

Easy to check as it can be read from normal world.

Can’t be disabled if locked (even from SMM).



Exploitation

”It takes all the running you can do, to keep in the same

place”



14/28

Callout of SMRAM



15/28

Exploitation problem

SMM_CODE_CHK_EN is a SMEP-like feature for SMM.

Usual kernel bypass tricks work, but:

SMM is a big blackbox and getting control of data is not

always obvious.

There is no ASLR but in practice address depends of

computers and firmware version.

Is there something which does not move (too much) and is

controlled ?



16/28

Saved state

The saved state when entering SMM contains registers.

Always at SMBASE + 0xFC00.

0x80 bytes of registers in total!
typedef struct _ssa_normal_reg {

UINT64 r15; // start at SMBASE + 0xFF1C
UINT64 r14; // 0xFF24
UINT64 r13; // 0xFF2C
UINT64 r12; // 0xFF34
UINT64 r11; // 0xFF3C
UINT64 r10; // 0xFF44
UINT64 r9; // 0xFF4C
UINT64 r8; // 0xFF54
UINT64 rax; // 0xFF5C
UINT64 rcx; // 0xFF64
UINT64 rdx; // 0xFF6C
UINT64 rbx; // 0xFF74
UINT64 rsp; // 0xFF7C
UINT64 rbp; // 0xFF84
UINT64 rsi; // 0xFF8C
UINT64 rdi; // 0xFF94

} ssa_normal_reg_t;



17/28

Bypassing CodeChk



18/28

Getting SMBASE

There is one little problem: SMBASE is unknown.

One SMBASE by processor and firmware dependent…

Usual techniques are not great:

(Educated) Guess (crash if you’re wrong).

Bruteforce (will crash).

Reading MSR IA32_SMMBASE (SMM only, chicken and egg

situation).

Another way ?



19/28

SMBASE initialization

SMBASEs is initialized by the PiSmmCpuDxeSMM driver.

Open-source driver in edk2.

For RAM space optimization does not reserve 0x10000 for

each CPU but just shift enough for not rewriting the Saved

State.

Calculation of a TileSize in the driver which is always at

0x2000 (of what I have seen).

If we got one SMBASE we got them all.



20/28

SMBASE Allocation

The PiSmmCpuDxeSMM needs to reserve the memory

(0x10000 + TileSize * (NumCpu – 1)).

Uses the function AllocateAlignedCodePages which is a

wrapper on SmmAllocatePages.

Possible to ask SmmAllocatePages where to allocate memory

but by default it uses AllocateAnyPages which is equivalent

to AllocateMaxAddress.

SmmAllocatePages will first look in a freelist and without

result it will take the highest possible address.

SMM drivers are also mapped in memory using this

function ! And the last driver mapped is

PiSmmCpuDxeSMM.



21/28

PiSmmCpuDxeSMM & SMBASE



22/28

PiSmmCpuDxeSMM Leak

If we got an address in PiSmmCpuDxeSMM we know

SMBASE.

PiSmmCpuDxeSMM registers a « normal » world protocol:
SystemTable->BootServices->InstallMultipleProtocolInterfaces (

&gSmmCpuPrivate->SmmCpuHandle,
&gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,
NULL);

gSmmCpuPrivate->SmmConfiguration is located in

PiSmmCpuDxeSMM (in SMM).

But the GUID and pointer are saved in normal world.

We can get it with LocateProtocol and deduce the base

address of PiSmmCpuDxeSMM.



23/28

SMBASE leak: recap

1 Get leak gSmmCpuPrivate->SmmConfiguration and calculate the

PiSmmCpuDxeSMM. (base = leak - offset)

2 Deduce the SMBASE address:
base - 0x10000 - tilesize * (numcpu - 1)

tilesize is always 0x2000.
numcpu can be retrieved using the EfiPiMpServicesProtocol.
Some firmwares do not correctly set the number of logical

processors…

3 Once we have the SMBASE we can calculate the saved

state address.



24/28

Shellcode ?

Usual shellcodes for SMM try to:

Disable the SMRR: invalidate SMRAM protection.

Modify SMBASE: change completely where the SMRAM is

located.

Those do not work with SMM_CODE_CHK_EN.

Maybe possible to modify SMRR and SMBASE.

In practice 2/3 registers are way enough for dumping

and/or rewriting whatever we want in SMRAM.

Usually rewriting a SWSMI handler is a good way to keep

SMM code execution after a shellcode is loaded.



25/28

Full exploitation



Conclusion

”When you’ve once said a thing, that fixes it, and you

must take the consequences”



27/28

Conclusion

Patch

This bug was silently patch on Lenovo P51s in August.

The handler for the command 0x3E00 has just been deleted.

As the base code crashes it may not have been

considered a security fix.

SMM_CODE_CHK_EN is pretty easy to bypass as long as we have

SMBASE.

But because of it callouts of SMRAM are dying because

BIOS developers can’t use them ;)

Recent development (ACM) introduce code signing in the

firmware: an SMM vulnerability is not enough for getting

persistence anymore.



THANK YOU FOR YOUR ATTENTION

DO YOU HAVE
QUESTIONS?

”It’s ridiculous to leave all conversation to the pudding!”


	Introduction
	Callout of SMRAM
	Exploitation
	Conclusion

