
SpeedPwning VMware Workstation

Failing at Pwn2Own, but doing it fast

Corentin Bayet (@OnlyTheDuck) & Bruno Pujos (@BrunoPujos)

Ekoparty 2020

September 18, 2020

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

5 Conclusion

6 Annexes

1/124

What is this ?

This talk is about the research we did for Pwn2Own

targeting VMware Workstation.

We wanted to share:

Our methodology,

Our technology,

A funny story !

We have a LOT to share:

Don’t be scared by the amount of slides, everything will be

ok !

As during the research, we will go fast, some parts lack of

details.

We would be pleased to answer your questions during the

live Q&A or after !

2/124

Who are we ?

Bruno Pujos (@BrunoPujos)

Security researcher & consultant at Synacktiv.

Previous work on UEFI and SMM.

Corentin Bayet (@OnlyTheDuck)

Security researcher & consultant at Synacktiv.

Previous work on Windows kernel heap exploitation.

Both interested in virtualization technologies.

https://twitter.com/BrunoPujos
https://twitter.com/OnlyTheDuck
https://github.com/synacktiv/Windows-kernel-SegmentHeap-Aligned-Chunk-Confusion

3/124

Introduction

Pwn2Own returns in 2020 with a virtualization category.

We’re interested in trying to participate in the contest.

We have only 40 (work) days to score (20 days each).

We picked VMware Workstation:

+ our favorite desktop virtualization software,

+ target previously documented,

+ seems doable in limited time.

We already worked on virtualization components, but

never on Workstation.

4/124

Planning

Plan

1 Introduction

2 Workstation Discovery

Virtualization for

dummies

Workstation Discovery

3 Vulnerability Research

4 Exploit

5 Conclusion

6 Annexes

4/124

Plan

1 Introduction

2 Workstation Discovery

Virtualization for

dummies

Workstation Discovery

3 Vulnerability Research

4 Exploit

5 Conclusion

6 Annexes

5/124

Virtualization for dummies

Virtualization ?

Virtualization allows to ”emulate” the hardware of a

computer.

Allows to run different(s) OS on the same hardware.

A guest or Virtual Machine (VM) is an OS which run with

the emulated hardware.

The host is the main (real) OS of the computer.

The hypervisor is all the code for handling the guest.

Security

The host should be isolated from the guests.

A VM Escape allows to get code execution in the host from

the guest.

6/124

Virtualization for dummies: devices

The hypervisor (host) emulates some hardware

components for the guest: the devices.

”Hardware assisted virtualization” (VT-x on Intel): use

hardware features for helping emulate the guest hardware.

Devices use ”traditional” technologies: PCI(e), IOPorts,

MMIO, DMA…

Devices can be: network card, USB, audio, graphic, printer,

hard drive… All of this must be emulated (and more).

Emulated devices are the main attack surface from the

guest.

6/124

Plan

1 Introduction

2 Workstation Discovery

Virtualization for

dummies

Workstation Discovery

3 Vulnerability Research

4 Exploit

5 Conclusion

6 Annexes

7/124

VMware Workstation

8/124

General Reverse

Locate user input

Functions allowing to register IOPort, MMIO, PCI…

Functions for read/write/map the guest memory.

Debug Symbols

Rename all globals setup from the configuration.

Rename lock functions from the open-vm-tools.

Locate and rename functions from debug strings.

Lot of symbols from the code loading a snapshot.

Misc

A vmware-vmx-debug.exe exists: more debug strings but

also more checks.

Init. of the devices documented in Straight Outta VMware.

9/124

Target selection

Our goal is to demonstrate a VM Escape.

We choose 3 targets, even if we thought we would have

only time to investigate 2 of them.

Focus on target mostly implemented in vmware-vmx.exe.

Pwn2own: guest and host Windows 10, with default

configuration.

Our choice was the following one:

USB: looked complex, vulnerability in the past.

Audio: no prior work at all, potential for parsing.

SVGA: complex, vulnerability in the past, error prone.

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

Misc research results

SVGA2

Vulnerability

4 Exploit

5 Conclusion

6 Annexes

10/124

Planning

10/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

Misc research results

SVGA2

Vulnerability

4 Exploit

5 Conclusion

6 Annexes

11/124

VMware Workstation architecture

12/124

Quick vulnerabity research results

HDAudio

Only forwards to waveIn* and waveOut* APIs of

winmm.dll.

No parsing, only raw data audio transmission to hardware.

Very few code, not interesting.

XHCI (USB 3.0)

More code than HDAudio.

But most of it is unreachable without plugging specific

USB devices, which is out of scope.

Reachable code in the default configuration partially

audited, found a useless bug (patched since).

13/124

Quick vulnerabity research results

Fuzzing

Tried to fuzz every component we audited.

With WinAFL and Synacktiv’s internal fuzzer.

Hard to implement, took a lot of time.

No results, big regret on spending too much time trying to

fuzz.

13/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

Misc research results

SVGA2

Vulnerability

4 Exploit

5 Conclusion

6 Annexes

14/124

SVGA2

Graphical interface for VMware products.

”Para-virtualized”: no physical device exists, ”idealized”

version of the hardware.

The backend implementation is made for being as fast as

possible and depends on the host.

We only look at the 3D part of the API.

Papers:

GPU Virtualization on VMware’s Hosted I/O Architecture by

Micah Dowty and Jeremy Sugerman,

Straight outta VMware by Zisis Sialveras.

https://www.usenix.org/legacy/event/wiov08/tech/full_papers/dowty/dowty.pdf
https://census-labs.com/media/straightouttavmware-wp.pdf
https://twitter.com/_zisis

15/124

SVGA2 guest view

16/124

Graphics object & ArrayID

Graphics object

Objects are everything we usually see: shaders, surfaces…

Objects are read from DMA zone in the guest and are

lazy-loaded by the VMX.

Possible to readback: for sync. between host and guest.

ArrayID

Array for storing the graphical objects on the VMX side.

Function for adding, removing and searching in those.

When an element is added to an array, the memory for this

element is allocated, and freed when removed.

17/124

Direct X API

Commands & APIs

Define graphical objects through a set of commands.

Several APIs (sets of commands) are exposed through the

commands and they can be used concurrently.

Commands/API enabled depend on config., host, guest…

We used two of them:

the GB (global ?): the ”normal” one,

the DX (Direct X) which is specific to Windows host.

DX API

The DX objects are always associated with a DxContext.
The DxContext is a classical graphical object.
Most commands of the DX API use a current context

provided by the guest for a batch of commands.

18/124

Back-end Renderer

When a ”real” action is made using the objects loaded,

they will be passed to a backend: the renderer.

The selected renderer depends on host, guest, config…In

our case (Windows guest and host), the DX11_Renderer is

used.

We did not reverse this (but we used it later on).

The graphical object will be used for creating new objects

for the renderer.

We called those ”Resource Container”, from their name in

Straight outta VMware.

The ”Resource Container” will then make the transition

with the real DirectX API (D3D11, …).

https://census-labs.com/media/straightouttavmware-wp.pdf

19/124

Planning

19/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

Misc research results

SVGA2

Vulnerability

4 Exploit

5 Conclusion

6 Annexes

20/124

Vulnerability

Able to trigger the vulnerability ∼14 hours before the
deadline for the end of the research.

Vulnerability identified in the handling of the DxContext:
Linked to the fact that the DX commands use a DxContext.
The DxContext used is fetch from a global variable:

current_dx_context.

Let’s look precisely at how the svga thread handle dx

commands.

21/124

Execution of DX Commands

22/124

Execution of DX Commands

23/124

Execution of DX Commands

24/124

The UAF

A command DX_INVALIDATE_CONTEXT exist:
1 the command calls delete_DXContext,
2 delete_DXContext delete a DxContext from the ArrayID,
3 the DxContext object is free.

No other check on the current_dx_context!
We got an UAF!

25/124

DxContext UAF

26/124

Vulnerability recap.

We got an UAF on a global current_dx_context.
The global pointer on the free chunk is lost when leaving
the command loop:

if an asynchronous action is triggered,

if a command fails,

if there is no other commands.

There is a restricted number of commands that uses the

current_dx_context.

27/124

Of course we have time

Registration for P2O ends in a week:

we have a POC for triggering,

setup for interfacing with the device is ”not great”,

we have no idea what most of the commands do,

we did not even start looking at the backend,

…

Do we try it ? Of course we do :)

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

Exploit Strategy

Getting a heap leak

Getting a .text leak

Pop a notepad

Exploit conclusion

Pwn2own ?

5 Conclusion

6 Annexes

28/124

Planning

28/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

Exploit Strategy

Getting a heap leak

Getting a .text leak

Pop a notepad

Exploit conclusion

Pwn2own ?

5 Conclusion

6 Annexes

29/124

Planning

30/124

Exploitation strategy

This is Pwn2Own, we just need to pop a calc or a notepad

to demonstrate the exploit.

We can call WinExec with the first argument pointing on
controlled data. We need :

A leak of the base of vmware-vmx.exe, to know the

address of the import table.

An arbitrary read, to read an address of a function of

kernel32 to compute WinExec’s.
An arbitrary call, to jump on WinExec.

Disclaimer: there is probably a better way to write this

exploit… but we did not have time.

31/124

Exploitation strategy

Problem with the DxContext UAF

Almost no pointers in the DxContext, or not used to read
or write data;

Size of 0x5B68, with no time to reverse all the backend

and the fields.

Only thing we can do is control some DWORDs stored in the
DxContext with various commands.

The only strategy is to realloc the chunk in UAF and

overwrite some DWORDs using these commands.

With heap massaging, we can control the alignment

between the UAF chunk and the target object.

32/124

Exploit - Massaging the heap

The segment heap is not enabled, so it’s the classic NT
heap.

All alloc with size < 0x3FFF will use LFH if used enough.

A great slide deck on NT heap internals is available here.

The UAF object has a size of 0x5B68, it will never be
handled by LFH.

We can massage the heap to align the DxContext in UAF
with other objects.

We need a good massaging primitive.

The SVGA provides a perfect massaging primitive with the
GbShaders: Command set_gb_shader:

alloc size fully controlled,

data in the allocation fully controlled,

can be freed at anytime,

Previously described in 2018 by @_zisis in a great paper.

https://fr.slideshare.net/AngelBoy1/windows-10-nt-heap-exploitation-english-version
https://census-labs.com/media/straightouttavmware-wp.pdf

33/124

Exploit - Chosing a target object

The objects that can be targeted are very limited:

cannot reliably target objects with a size < 0x3FFF, because

of LFH,

need to control its allocation and free.

Again, no time to reverse too much of the backend.

The GbContext is another object containing a lot of
information:

size of 0x5490, won’t use LFH,

ability to readback a part of its content,

can be easily allocated and freed.

Might be a good target.

34/124

Exploit Strategy

The vulnerability can be used multiple times to obtain

different primitives.

Using this strategy, we successfully obtained:

a heap pointer leak,

an arbitrary free primitive (with some constraints),

an arbitrary call primitive (with some constraints).

Those primitives are enough to get everything needed.

Let’s see how.

34/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

Exploit Strategy

Getting a heap leak

Getting a .text leak

Pop a notepad

Exploit conclusion

Pwn2own ?

5 Conclusion

6 Annexes

35/124

Exploit - Heap Leak

First steps is to get a leak.

The readback of the DxContext cannot be used because it
does not use the global.

Only two possibilities using the UAF:

1 Leak a pointer stored in the DxContext using another
object readback.

2 Trigger another memory corruption which can provide us a

leak.

First possibility seems best.

Wait is there even one pointer ?

36/124

Exploit - DxContext Pointer

Most front-end objects do not store the pointer of other

objects but simply their ID for the ArrayID.
Luckily we were able to find one pointer!

Pointer for a DxShader:
the object will be added to an ArrayID,
the shader content will be allocated and the pointer is

stored in the DxContext object!

This would give us a leak in the heap, with partial control

of the allocated size.

Seems perfect, let’s do it.

37/124

Adding a DxShader

Adding a DxShader is quite simple, the command

dx_set_shader will do it for us.
A current_dx_context must be set and the type of the

shader is verified.

Then it will make the following steps:

1 fetch the DxShader struct from the guest,

2 read the content of the shader from the guest,

3 check that the content of the shader is valid,

4 check that the shader is not present in the associated

DxContext.

Steps 1 & 2 are classic.

Steps 3: we need a correct DxShader.

38/124

DxShader format

The shader is apparently using the SML4 format.

The galium header from Mesa provides several interesting

information about it.

The DxShader is decomposed into two main parts:

1 A first header followed by an array of tokens: this is the

main part of the shader.

2 A second optional header (which does not seem

documented) which contains 3 arrays of unknown

elements.

The second header can be hardcoded.

Without using the first header we could have a maximum

size of 0x3C18: perfect for a leak into the NT Heap.

39/124

Reading back the DxShader pointer

We now need an object for re-use of the UAF allowing us

to readback the pointer.

The size of the DxContext object is 0x5B68.
The size of the GbContext object is 0x5490.
This looks like a good match!

We can readback a GbContext and it happens that the
location of the DxShader pointer is in a part of the
GbContext which can be readback!

40/124

A little problem

After the parsing of a DxShader, the DxContext will be
recuperated from the ArrayID.
If the DxContext is not in the ArrayID, we have a NULL
deref:

cid = DXContextVmxIntern_->cid; // this is the UAF DxContext
// CID is the Context ID

// [...]
dxCtxt = ArrayId::find_value(&array_dx_context, cid, mask);
// [...]
v17 = dxCtxt->shaderState; // NULL deref if CID not in array

The ID is always stored at the beginning of an object and

is chosen by the guest.

This only means we have to set the ID of the GbContext
for the re-use to a valid ID for a valid DxContext.

41/124

Final steps for the leak

42/124

Final steps for the leak

43/124

Final steps for the leak

44/124

Final steps for the leak

45/124

Final steps for the leak

46/124

Exploit Steps

47/124

Leak conclusion

We successfully triggered a leak on the heap:

+ Memory can be cleaned: the DxShader can be freed by
removing the DxContext B.

+ Size is partially controlled: leak in the heap of our choice.

+ Content is controlled with constraint: SML4 compatible.

+ Can be triggered several times if needed.

It uses the only pointer we found on the DxContext.
Only ∼6 days left…

48/124

Planning

48/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

Exploit Strategy

Getting a heap leak

Getting a .text leak

Pop a notepad

Exploit conclusion

Pwn2own ?

5 Conclusion

6 Annexes

49/124

Exploit - Getting a .text leak

We need a .text leak to control the execution flow.

We did not find any way to do that using directly the UAF

of the DxContext.
So we needed a second stage:

We leveraged the DxContext’s UAF to reach an arbitrary
free primitive.

We were able to turn it into another UAF.

And then use this UAF to get a .text leak.

Let’s see how.

50/124

Exploit - Getting an arbitrary free/call primitive

The GbContext can be linked to a Resource Container.
Resource Container objects are stored in a global array.

The GbContext only stores an index in this array, called
RcIndex, at offset 4.

We can use the DxContext’s UAF to control the RcIndex of
a GbContext.

The set_depthstencil_state command allows to write

the DWORD at offset 0x4464 of the DxContext.
Use heap massaging to align the chunks.

51/124

Exploit - Controlling the RcIndex

The idea is to alloc alternatively some chunks of size 0x5B68

(sizeof(DxContext)) and 0x3D98.

52/124

Exploit - Controlling the RcIndex

Then, one of the 0x5b68 chunk is freed.

53/124

Exploit - Controlling the RcIndex

The DxContext is allocated, and fall in the hole.

54/124

Exploit - Controlling the RcIndex

The vulnerability is triggered, freeing the DxContext, but still in
UAF, so we can use it.

55/124

Exploit - Controlling the RcIndex

Then, allocs of 0x4450 are sprayed. One of them should reuse

the hole created by the freeing of the DxContext. A hole of size

0x1710 remains behind this new allocation.

56/124

Exploit - Controlling the RcIndex

The allocations of 0x3D98 are released, creating a hole of size

0x54A8.

57/124

Exploit - Controlling the RcIndex

Finally, a GbContext is allocated. Since its size is 0x5490, the
place needed with the header is 0x54A0, which falls perfectly

with the hole just created.

58/124

Exploit - Controlling the RcIndex

With this layout, the offset between the start of the

DxContext and the start of the GbContext is precisely
0x4460.

Allows to rewrite the RcIndex of the GbContext with the
set_depthstencil_state command.

By freeing the altered GbContext, we can reach
SVGADestroyGbContextResourceContainer with a
controlled RcIndex.

59/124

Exploit - Getting an arbitrary free/call primitive

void __fastcall SVGADestroyGbContextResourceContainer(int RcIndex)
{

GbContextResourceContainer * rc = g_GbContextResourceContainers[RcIndex];
g_GbContextResourceContainers[RcIndex] = 0i64;
[...]
SVGACallBackendDestroy(*rc->field_B220);
MKSMemMgr_free(Shim3DContext, rc); // [4]

}

60/124

Exploit - Getting an arbitrary free/call primitive

When freeing the GbContext, the Resource Container is
fetched and freed.

Some data in the .data section can be controlled using

various commands.

By controlling the RcIndex, the rc pointer can be
controlled.

Using the previous heap leak and some shaders, the

content of the rc structure can be fully controlled.

61/124

Exploit - Getting an arbitrary free/call primitive

void __fastcall SVGACallBackendDestroy(__int64 RcBackend)
{

counter = 0i64;
while (counter < RcBackend->nb_callbacks)
{

v3 = RcBackend->callback_args[counter] ;
if (!v3->called)

RcBackend->callback_ptr(v3->arg1, v3->arg2); // [1]
counter++;
v3->called = 1;

}
[...]
free(RcBackend->callback_args); // [2]
free(RcBackend); // [3]

}

62/124

Exploit - Getting an arbitrary free/call primitive

Reaching SVGACallBackendDestroy with a controlled
argument provides.

1 An arbitrary call with 2 controlled arguments.

2 An arbitrary free.

3 RcBackend is freed, it must point on a valid chunk or it will

crash.
4 rc is freed with a special internal heap:

needs to fake a header for the internal heap,

had to free a real chunk to avoid crashing.

Can’t use the arbitrary call for now, we need a leak of the

address of a function to call.

63/124

Exploit - Arbitrary free to .text leak

Use the arbitrary free to put a GbContext in UAF.
Can already be done using the heap leak and some

massaging.

Overlap the GbContext with an object containing a
function pointer.

The GbContextResourceContainer is the actual object
supposed to be linked to the GbContext via the RcIndex.
Size of 0xB7E0, does not fall into LFH.

Contains a function pointer at offset 0xB7D8.

Readback the GbContext to get the function pointer.

64/124

Exploit - Arbitrary free to .text leak

First, blocks of 0xB840 are sprayed.

65/124

Exploit - Arbitrary free to .text leak

One of them is freed, and some allocation of size 0xB840 -

sizeof(GbContext) = 0x63A0 are sprayed.

Split the 0xB840 into two chunks, one of 0x63A0, and one

of 0x5490.

66/124

Exploit - Arbitrary free to .text leak

67/124

Exploit - Arbitrary free to .text leak

After this, we should have a hole of 0x5A90, which is the

size of a GbContext. We allocate a GbContext, that will fall
into this hole.

68/124

Exploit - Arbitrary free to .text leak

The allocation of 0xB840 that followed the first we freed is

also freed.

Hopefully, the allocation will be just in front the setup we

just did.

This freed allocation will be split up in three different
chunks:

One allocated chunk of size 0x8b88, called Shader1 ;

One allocated chunk of size 0x1800, called Shader2 ;

One freed chunk of size 0x14b8, called ShaderLeaked.

Use the free chunk of 0x14b8 do allocate a DxShader and
leak it’s address.

The address of this setup is known.

69/124

Exploit - Arbitrary free to .text leak

70/124

Exploit - Arbitrary free to .text leak

71/124

Exploit - Arbitrary free to .text leak

Build a fake GbContextResourceContainer into the
Shader1.

The rc + 0xB220 will point in the middle of the

ShaderLeaked.

The pointer stored there will point to the beginning of the

ShaderLeaked.

Trigger the arbitrary free.

72/124

Exploit - Arbitrary free to .text leak

73/124

Exploit - Getting an arbitrary free/call primitive

void __fastcall SVGADestroyGbContextResourceContainer(int RcIndex)
{

GbContextResourceContainer * rc = g_GbContextResourceContainers[RcIndex];
g_GbContextResourceContainers[RcIndex] = 0i64;
[...]
SVGACallBackendDestroy(*rc->field_B220); // Goes down this path first
MKSMemMgr_free(Shim3DContext, rc);

}

74/124

Exploit - Arbitrary free to .text leak

75/124

Exploit - Arbitrary free to .text leak

76/124

Exploit - Getting an arbitrary free/call primitive

void __fastcall SVGACallBackendDestroy(__int64 RcBackend)
{

counter = 0i64;
while (counter < RcBackend->nb_callbacks)
{

v3 = RcBackend->callback_args[counter] ;
if (!v3->called)

RcBackend->callback_ptr(v3->arg1, v3->arg2);
counter++;
v3->called = 1;

}
[...]
free(RcBackend->callback_args); // Frees TargetGbContext
free(RcBackend); // Frees ShaderLeaked

}

77/124

Exploit - Arbitrary free to .text leak

78/124

Exploit - Arbitrary free to .text leak

79/124

Exploit - Arbitrary free to .text leak

80/124

Exploit - Getting an arbitrary free/call primitive

void __fastcall SVGADestroyGbContextResourceContainer(int RcIndex)
{

GbContextResourceContainer * rc = g_GbContextResourceContainers[RcIndex];
g_GbContextResourceContainers[RcIndex] = 0i64;
[...]
SVGACallBackendDestroy(*rc->field_B220);
MKSMemMgr_free(Shim3DContext, rc); // Frees shader 1

}

81/124

Exploit - Arbitrary free to .text leak

82/124

Exploit - Arbitrary free to .text leak

Shader1, ShaderLeaked, and TargetGbContext are in UAF.

It’s not a problem to have shaders in UAF as it won’t crash.

Shader 2 is necessary here to avoid the coalescing of

Shader1 and ShaderLeaked.

The GbContext with the controlled RcIndex is freed too.

83/124

Exploit - Arbitrary free to .text leak

Reallocate the shader that were freed.

84/124

Exploit - Arbitrary free to .text leak

Reallocate the shader that were freed.

85/124

Exploit - Arbitrary free to .text leak

86/124

Exploit - Arbitrary free to .text leak

87/124

Exploit - Arbitrary free to .text leak

88/124

Exploit - Arbitrary free to .text leak

88/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

Exploit Strategy

Getting a heap leak

Getting a .text leak

Pop a notepad

Exploit conclusion

Pwn2own ?

5 Conclusion

6 Annexes

89/124

Exploit - Before leaving the command loop

To reach the arbitrary call, we need to reach the same

code path.

But we just freed the GbContext with the RcIndex
controlled .

This is how we reach the arbitrary free path.

90/124

Exploit - Before leaving the command loop

A GbContext can be quickly reallocated in the place of the
old one.

Write again the RcIndex using the
set_depthstencil_state command.

91/124

Exploit - Before leaving the command loop

92/124

Exploit - Using the arbitrary call

Reach the SVGACallBackendDestroy function, but this
time to use the arbitrary call:
while (counter < RcBackend->nb_callbacks)
{

v3 = RcBackend->callback_args[counter] ;
if (!v3->called)

RcBackend->callback_ptr(v3->arg1, v3->arg2);
counter++;
v3->called = 1;

}

The loop allows to do multiple arbitrary calls.

Always the same function called.

But different arguments, always controlled.

RcBackend is fully controlled and at known address.

93/124

Planning

94/124

Exploit - Not so arbitrary call

72 hours before the end: wait…how does Control Flow
Guard (CFG) work ?

Check that addresses of indirect calls are ”valid” functions.

Include only functions which can be called indirectly.

Compare with a bitmap.

Implementation in ntdll!LdrpDispatchUserCallTarget.

Solution ?

Dynamic dump of the bitmap.

Re-implement the check in python.

Gather a list of all functions we can use in IDA.

Search for small functions, which deref. pointer, without

loop and without call to other functions.

In total, it took one of us ∼4 hours for doing all of this.

95/124

Exploit - Using the arbitrary call

Found an arbitrary read and write function.
int64 arbitrary_read_write(int64 src, QWORD *dst)
{

result = *(_QWORD *)(src + 0x70);
*dst = result;
return result;

}

Read a value at controlled location from argument 1.

Stores it to a controlled location from argument 2.

96/124

Exploit - Using the arbitrary call

Found an arbitrary increment with an arbitrary value on a
DWORD.
int64 arbitrary_increment(unsigned int *src, _DWORD *dst)
{

// [...]
result = *src;
*dst += result;
return result;

}

Read a value at controlled location from argument 1.

Add it to a controlled location from argument 2.

97/124

Exploit - Using the arbitrary call

Ability to read and write in memory.

Ability to do addition.

Ability to control the execution flow.

Use the read/write to change the value of the function

pointer.

We got a Turing machine !

Calls can be chained to read/write and call WinExec.

98/124

Exploit - Using the arbitrary call

1 Read the Import table address of CreateProcessW and
write it at a known location.

99/124

Exploit - Using the arbitrary call

2 Use the read/write to change the next call address, and

change it to the arbitrary add function.

100/124

Exploit - Using the arbitrary call

3 Adds the WinExec offset to the CreateProcessW address.

101/124

Exploit - Using the arbitrary call

4 Use the arbitrary add to add an offset to the call pointer,

and change it back to the arbitrary read function.

102/124

Exploit - Using the arbitrary call

5 Use the arbitrary read to readback the WinExec address
and replace the call pointer by WinExec.

103/124

Exploit - Using the arbitrary call

6 Call WinExec with controlled arguments.

104/124

Pwn2Own - Popping a notepad

105/124

Pwn2Own - Popping a notepad

DEMO

106/124

Planning

106/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

Exploit Strategy

Getting a heap leak

Getting a .text leak

Pop a notepad

Exploit conclusion

Pwn2own ?

5 Conclusion

6 Annexes

107/124

Exploit - Timeline

Monday March 16th, 3AM: First notepad!

Exploit reliability around 60-80%:

asynchronous SVGA2 event,

heap-spray failure,

uncompatible original device state,

…

Time left: 39 hours before the contest.

108/124

Exploit - Timeline

Thursday March 12th: new version of Vmware
Workstation.

VMSA-2020-0004

Of course our exploit run on previous version.

But no impact on our vulnerability, shouldn’t change

anything.

Let’s update and run our exploit.

109/124

Exploit - WTF

110/124

Planning

111/124

Exploit - WTF

The leak doesn’t work anymore.

Looking for the root cause.

30 hours remaining before the contest.

Some patches in the parsing of the DxShaders.
More constraints on the allocation of the shader to get the
leak.

Impacts the exploit widely.

All size in the massaging needs to be changed.

Fixed Monday evening.

Reliability of the exploit falls to 30%.

24 hours remaining before the contest.

112/124

Exploit - Last day

Fix the reliability of the exploit:

spray more,

works at 80% on our setup (two different computers).

Do the setup for the contest.

Our exploit works in Python, need an .exe.

Thanks py2exe & SFX.

Our exploit use a kernel in debug mode to get read/write
on physical memory.

Use a vulnerable signed driver to load a custom driver.

access to physical memory and IOports.

Thanks @w4kfu and @_lucas_georges_ that helped us on

this.

112/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

Exploit Strategy

Getting a heap leak

Getting a .text leak

Pop a notepad

Exploit conclusion

Pwn2own ?

5 Conclusion

6 Annexes

113/124

Pwn2Own - Us at Pwn2Own

114/124

Pwn2Own - aaaaand... fail

Failed attempt:

The exploit failed 3 times.

Numerous problems we knew about and could have fix, but

did not have time.

Of course we don’t know exactly why.

Very frustrating.

But ZDI did buy the vulnerability and the exploit outside of
the contest.

Really cool from them !

https://youtu.be/u1udr7j9MQA?t=144

115/124

Pwn2Own - Feedback

Pwn2Own is well organized and really cool.

Answered quickly to our many (many !) questions.

ZDI does everything to make your exploit works. They

want you to succeed !

Thanks to ZDI, Pwn2Own is great !

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

5 Conclusion

6 Annexes

116/124

The End

We spent 2 months working as much as we could.

Several bugs found:

One exploitable and exploited: CVE-2020-3962.

One hardly exploitable: CVE-2020-3969 (reported to ZDI

outside of the contest).

Multiple bugs useless or unexploitable.

VMWare Advisory VMSA-2020-0015.

https://www.vmware.com/security/advisories/VMSA-2020-0015.html

117/124

The End

Notes for next time:

40 days is not really enough ;)

Less attempt of fuzzing, more reverse.

FastPwning is challenging.

Might be frustrating.

Exhausting.

Awesome !!

118/124

Thanks

@_zisis for the amazing paper Straight outta VMware

@thezdi for Pwn2Own

@hakril, @w4kfu and @_lucas_georges_ for their amazing

tools and help !

https://twitter.com/_zisis
https://census-labs.com/media/straightouttavmware-wp.pdf
https://twitter.com/thezdi
https://twitter.com/hakril
https://twitter.com/w4kfu
https://twitter.com/_lucas_georges_

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

5 Conclusion

6 Annexes

State of The Art

Our Setup

118/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

5 Conclusion

6 Annexes

State of The Art

Our Setup

119/124

State Of The Art – publication

Small number of publications (∼25) about VMware.

Basically everything listed in: VMware Exploitation github.

Some articles about specific components are interesting

for those components but not in general.

Three interesting papers:

Straight outta VMware is the most interesting paper, speak

about Workstation internals and specifically about SVGA.

The Great Escapes Of Vmware provides an overview of

past vulnerabilities.

Wandering through the Shady Corners of VMware

Workstation/Fusion contains information helping to start

the RE and things specific to the SVGA.

https://github.com/xairy/vmware-exploitation
https://census-labs.com/media/straightouttavmware-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Mandal-The-Great-Escapes-Of-Vmware-A-Retrospective-Case-Study-Of-Vmware-G2H-Escape-Vulnerabilities.pdf
https://comsecuris.com/blog/posts/vmware_vgpu_shader_vulnerabilities/
https://comsecuris.com/blog/posts/vmware_vgpu_shader_vulnerabilities/

120/124

State Of The Art – tools & code

Code of the Linux drivers for the emulated devices is

open-source.

Code in Mesa is interesting for the SVGA.

Open-vm-tools distributed by VMware are opensource

and contains lots of code, some of it is actually shared

with the hypervisor.

https://github.com/vmware/open-vm-tools/

120/124

Plan

1 Introduction

2 Workstation Discovery

3 Vulnerability Research

4 Exploit

5 Conclusion

6 Annexes

State of The Art

Our Setup

121/124

VMware binaries

Original Binaries

Version: 15.5.1.50853

vmware-vmx.exe MD5:

D76FEB17DF9153630D00E373A6ECB99B

Final Binaries

Version: 15.5.2.54704

vmware-vmx.exe MD5:

B23A9F348DA1F2DC2B0D6B2DB5D9CCA7

122/124

Our setup

For the debug of the hypervisor:

we only debugged the userland process (vm worker).

PythonForWindows (PFW) by@hakril for scripting.

Windbg for interactive.

For interfacing with the devices from the guest (necessity

to be in kernel): LKD python3 by@w4kfu.

For reverse: IDA and Bip by Bruno for scripting.

For fuzzing: Synacktiv internal fuzzer & winafl. Also use

lighthouse for coverage and analysis.

https://github.com/hakril/PythonForWindows
https://twitter.com/hakril
https://github.com/w4kfu/LKD/tree/py3-dev
https://twitter.com/w4kfu
https://github.com/synacktiv/bip
https://twitter.com/BrunoPujos
https://github.com/googleprojectzero/winafl
https://github.com/gaasedelen/lighthouse

123/124

Guest driver & devices initialization

The guest drivers are doing the initialization of the

devices, those are provided by VMware.

For not having to support the initialization (RE,

re-implement, …), we just patch them for ”stopping” them.

In particular we did that for SVGA (vm3dmp.sys)…

…and we regretted this choice later on :/

THANK YOU

ANY
QUESTIONS?

	Introduction
	Workstation Discovery
	Virtualization for dummies
	Workstation Discovery

	Vulnerability Research
	Misc research results
	SVGA2
	Vulnerability

	Exploit
	Exploit Strategy
	Getting a heap leak
	Getting a .text leak
	Pop a notepad
	Exploit conclusion
	Pwn2own ?

	Conclusion
	Annexes
	State of The Art
	Our Setup

