&= SYN 0C)aGreHack

No lightsaber is needed to break the
Wookey

- — t .t.

Who are we?

David BERARD Jérémie BOUTOILLE
B security researcher @Synacktiv B security researcher @Synacktiv
B Vulnerability research & exploitation B Vulnerability research & exploitation

Synacktiv

M offensive security company
M Based in France

M ~70 Ninjas

B We are hiring!!

www.synacktiv.com
www.synacktiv.com

Introduction . .

CESTI Challenge

M Organized every two years to evaluate ITSEF/CESTI laboratories
M until this year :
B Two challenges were organized, one for hardware CESTIs, and one for software CESTIs
B CESTIs have different products to evaluate depending on their agreement categories.
B This year a unique challenge has been organized on a unique product
B The objective is to evaluate software laboratories to do hardware testing and vice versa
B Common target : Wookey

Wookey

What is Wookey

M Open-Source and Open-hardware
B Developed by ANSSI
B Secure USB storage device
B Encrypted data on an SD card
M Authentication through a touchscreen
B Double authentication : PET & User PIN
B Multiple smartcards are used for
cryptographic operations
M User smartcard for authentication and
data decryption
B DFU smartcard to enter in update mode
M Firmware signature
B Firmware is unique per device (contains

encrypted secrets)

Wookey : Hardware

Hardware design

B Main MCU : STM32F4
B UTAG only on debug boards
B Production boards rely on Read Out
Protection (RDP=2) to disable JTAG
B MPU used for the multitask 0S

M Used interfaces

B SPI for the display

M 1507816 to communicate with the
smartcard

M Buttons for DFU mode and reset

B USB HS/LS for USB Mass Storage

B UART for logs (may be used as input on
debug board)

Wookey : Software

Developers

B Full software stack developed by ANSSI and available on Github

Languages

B Bootloader: C
B Micro-Kernel : ADA
M Drivers and Task: C

B Cortex-m4 MPU is used to isolate tasks
B Syscalls are handled by the ADA Micro-Kernel
B Task and drivers have permissions that are verified by the kernel in syscalls

Challenge Scope . .

Methodology

il CESTI asked to write a full test plan
ANSSI reviewed test plan and selected few tests (hardware and software)

CESTI do their analysis based on selected tests
M 3 boards were given to CESTIs : prod board, dev board, STM32F4 discovery

CESTI write their assessment report and send it to ANSSI
H ANSSI will organize a debriefing session with all CESTIs

B sw : ADA kernel syscalls analysis and fuzzing

B SW : Fuzzing of the 1ISO7816 library which handles smartcard messages

B HW : Review of the secure channel establishment

B HW : Analysis of the RDP2 protection (used to disable JTAG) regarding its resistance
to power glitches

Synacktiv selected tests

Software : Syscall fuzzing

Very basic Syscall fuzzer

M 0n a development board
M syscall fuzzer is built inside a userland task
B choose a random syscall number

B choose argument values in a list that contains
M random values
M limit values
M valid pointer pointing to random data
m .
M cCollect result on the UART : kernel crash logs on it

(even on the production boards)

FUZZER syscall 12
FUZZER argd
FUZZER argl
FUZZER arg2
FUZZER arg3
FUZZER

Frame 1000BEC4
EXC_RETURN FFFFFFF1
RO 2
RL 0
R2 94

]

2
R5 1000061C
R6 0

R7 200062960
R8 B1DAGA4O

R10 94

R11 20005FDO

R12 0

PC 80219CE

LR 80214BD

PSR 1000008
panic: Hard fault!

(SVC_IPC _RECV_SYNC) ..
0xbldabad®
0x20006290

0x0
0x20006290

Software : Syscall fuzzing

Quickly got multiple crashes on
multiple syscalls
B One of them allows writing a
zero (32bits) at an arbitrary
address!
B Trivial exploit
B VPU_CTRL register is
memory mapped and allows
to disable the MPU
B MPU is the only feature used
to isolate task memory
M Wwithout MPU, tasks can read

and write the kernel

EXPLOIT
EXPLOIT
EXPLOIT
EXPLOIT
EXPLOIT
EXPLOIT
EXPLOIT
EXPLOIT
EXPLOIT
EXPLOIT
EXPLOIT
EXPLOIT

MPU_CTRL is @ 0xe000ed94
Writing 0...
MPU should be turned off !
Looking for tasks @ 0x10000000
struct task is @ 0x100006e0
name = EXPLOIT
entry point = 0x8090001
ttype = TASK TYPE_USER
control = 0x3
setting to ttype = TASK TYPE_KERNEL
control = 0x2
Privileged mode !

Software : Syscall review . .

Code review

B ADA is not so easy to read for people not familiar with it (like us).
M some low impact bugs found

Resuls |
B ADA protect you from basic memory bugs, but for a OS kernel the same bug classes as
C can be present
B Use of ada . unchecked conversion have to be double-checked
B Fuzzer found bugs we didn't find during code audit.

Software : lib7816 fuzzing

Coverage guided fuzzing

M cibrary

B Easy to make it standalone

M Parse smartcard messages on a X64 PC
B Libfuzzer + ASAN

M Good coverage
M No bug found
M studing this library was helpful for hardware tests.

Hardware : Secure channel

Decoding ISO7816 frames

B Logic analyzer to capture traffic from/to the smartcard

M Modification of the ISO7816 Saleae decoder to add a
PCAP export

B custom Wireshark dissector to parse Wookey specific
frames

Hardware : Secure channel

Start

= Capture

from this

Hardware : Secure channel

iques Telephonie Wireless Outils Aide

Fichier Editer Vue Aller Capture Analyser Stati:

o K - + 7 5]
4 m @B RE e e ¥iea= @ e
NO. Time Source Destination Protocol Lengtk Info 3
1 8.080008 Interface card 150 78 20 Select file
2 8.080602 Card Interface 150 78. 6 Response APDU (to Select file)
3 0.088005 Interface Card 150 78 74 Wookey - Derive local petke:
. 4 8.0B0RGE Card Interface 150 78 70 Response APDU (to Wookey - Derive local pe
5 8.0806014 Interface Card 1s0 78.. 170 Wookey - Secure channel init
6 0.080019 Card Interface 150 78 166 Response APDU (to Wookey - Secure channel
7 8080021 Interface card 150 78 58 Wookey - Unlock petpin
8 ©.680023 carg InterTace IS0 78 39 Response APDU (to Wookey - Unlock petpin)
9 8.600027 Interface Card 150 78. 42 Wookey - Get petname
10 ©.080629 card Interface 150 78 41 Response APDU (to Wookey - Get petname}) -
‘ 0
INE: dedbaar: 53247Debb1bB2416b028a2c.. -

» 150 7816 Command APDU
[Response in frame 4
» Class: struciure and ceding according to ISO/IEC T816 (8xB8)
Instruction:
» Parameters
Length rleld LC axae
'
0088 80 46 Ba 08 @
0010

G
0836
0048

to this

Hardware : RDP . .

STM32 Read Out Protection

B STM32 Debug functionalities can be limited/disabled with this protection
B RDP configuration is saved in options bytes
B 1 byte for 3 different states :

B RDPO : 0XAA No protection (default), JTAG is enabled

B RDP2 : 0xCC All debug features are disabled, no JTAG

B RDP1 : All other values : Flash memory is protected against reading

B No downgrade possible from RDP2

STM32 Read Out Protection : Fault attack

B Many public research on the subject on STM32F1, STM32F2 and STM32F3 (power
glitches, EM, laser)
B Downgrade from RDP2 to RDP1 by injecting fault during the BootROM startup

B A single bit flip when BootROM reads RDP option byte allows the downgrade
M RDP1 state is coded with many values

B A public research show how the RDP1 state can be bypassed

Hardware : RDP . .
||

STM32 Read Out Protection : Wookey

B Wookey uses RDP2 to disable all debug features
B Wookey developers are aware of these vulnerabilities, the bootloader contains
mitigations
B Double checks are implemented in critical places
B RDP value is read by the bootloader and checked with 0xCC (RDP2)
M In case of anomaly detection tasks are erased from the flash
B Our objective : fault Wookey’s STM32F4 RDP with a single fault with cheap hardware

Hardware : Power glitches setup

Board selection

B The Wookey board should not be modified

B Wookey project can be built for STM32F4 discovery board

M Discovery boards are not expensive, we can risk to break some
B Full schematics are available online

Hardware : Power glitches setup

External MCU power supply
L R 5 i

B 1o inject power glitches power supply
must be finely controlled
M on discovery board a jumper can be
removed to place an ampere meter (in
blue)
B Can be used to isolate the board
internal power supply
M External power supply can be
connected on these PINs

B Reset PIN is available on headers

Hardware : Power glitches setup

removing Decoupling capacitors .

To inject power glitches power supply
must be finely controlled

Decoupling capacitors are here to
stabilize MCU power supply

Fault will be injected with power pulses
Decoupling capacitors absorb such
rapid power changes

Unsolder them! (in red)

o0

n 0

s
Lo La] Lo
oot | Joout | _Jonr
o - cu

3
“Jooor | “Jooor | “oow

Hardware : Power glitches setup

] |
H

M External power : DPS3005 ~30€
B Multiplexer : MAX4619 ~1€

B FPGA : Arty A7-100T ~200€

B swb probe : Another STM32F4
discovery board

FPGA
DIGILENT Arty A7-100T

UART_PB6—
FT0F

—nRsT—]

STLINK o |
B Drive multiplexer to switch from external power to ground
B Forward Wookey's UART logs to the PC

B Drive Wookey RST to reboot board

Hardware : Power glitches setup

‘;]» .
|

ALIMENTATIO

ZJ ‘
-
o
o
=
Q:
mL
sk
o

m
EDGITAL SECURITY

21/40

Hardware : Fault injection, pulse generation

D £92.000000ns T

RIGOL ™0 H 200ns ESSMSE

{orizontal v

GLITCH

4 VDD
A\
Phase £
152

m\\:/./
Phase
1+

NRST RESET

delay width

Pulse parameters

P

PC sends width and delay parameters to the FPGA (counted in FPGA cycle : 1ns)
FPGA toggles RST

FPGA waits delay cycles

FPGA toggles multiplexer control PIN : MCU power is now connected to ground

FPGA waits width cycles

FPGA toggles multiplexer control PIN : MCU power is now reconnected to power supply
PC tries a JTAG connection

collects UART logs during all these operations

oo~ -

(@]

Hardware : Fault injection, parameters

VDD Rom code Bootloader
Phaset
T i R TSI+

UART

NRST

Find correct fault parameters

M Try all combinations of width and delay

M width: 1to 15 FPGA cycles
B MCU doesn't survive if glitches are more than 15 cycles wide

M Delay : 0to 52 000 cycles
B Easy to spot the bootloader initialization by looking at the UART

Hardware : Fault injection, parameters

H s00us o (o e < 11.5200000us Ti®@ 250\
" Couplage
T« bc
" Limite BP

OFF

4 10X
Inverse
OFF
"~ VoltsiDiv

Coarse

Unité

« M

m
EDGITAL SECURITY

24/40

Hardware : Fault injection, parameters

RIGOL ™ S00MSals

H 500us 300 pis [——————

11.5200000us T 250V
Horizontal

Y —————
v Couplage

" Limite BP
OFF
Sonde
Al 10X
Inverse
OFF
" VoltsiDiv

Coarse

Unite

« M

e

EDGITAL SECURITY

25/40

Hardware : Fault injection, collect data

n ea

M Try JTAG connection
B Collect bootloader logs for futur analysis

= Wookey Loader =
: Dec 19 2019 at 08:52:29

Built date

Board : STM32F407
RDP_value 1 Oxcc
Hard fault

sch.hfsr 40000000 scb.cfsr 100
-- registers (frame at 20001f74, EXC_RETURN

ro 500000c rl 80 r2 7b
r4g 0 r5 8000188 r6 0 r7 calc
rg 0 r9 0 rlie 6 rll 0

rl2 o pc 2035c30 1r 8003025

-- stack trace

20001f70: 8003973 0 8000188 O
20001f80: cabc 0 ©

20001f90: 0 fffffff9 500000c 860
20001fa0: 7b 500000c © 8003025
20001fb0: 2035c¢30 © 20001fcO 8600123d
20001fcO: 6 3000003 0 c

20001fdo: 3 fcOca3f3 20001fed 80012e3
20001fe0: 1 3000003 20001ff0 80012ff
Oops! Kernel panic!

Hardware : Fault injection, results . .

RDP downgrade : Results

[Wookey protections are resistant
B Bootloader detects RDP inconsistency
B Erase sensitive data and reboot the board

Bootloader glitches

B Many glitches detected in UART log
M PANIC
B values modification
B State machine state changes

B Replaying parameters (glitch + delay) give a good reproduction rate
M Only the bootloader has protections
B other software components can also be targeted

Hardware : Fault injection, enlarge your scope

libiso7816

M Already analyzed / fuzzed, no vulnerabilities found

B Handle smartcard messages before user authentication

B Rapid source code review to find a place where a glitch can create a software
vulnerability

Hardware : Fault injection, smartcard library

atr->h num = atr->t0 & Ox0f;
for(i = 0; 1 < atr->h num; i++){
if(SC getc timeout(&(atr-=h[i]), WT wait time)){
goto err;

A,

checksum ~= atr->h[i];

b
Answer To Reset message

B ATRis the first message from the smartcard after reset
B Parsed by libiso7816

ATR parsing

B ztr->his a 16 bytes long stack buffer
B atr->t0 value comes from the smartcard
M If a glitch affects h_num value a stack-overflow can occur

Hardware : Fault injection, smartcard library

il e =]

loc_80C4306

LDRB R3, [atr, #1]

LDR.W curr_mask, =(SC_current_sc_frequency - 0x80C4324)
AND.W R3, R3, #0xF =——

MOV R9, #0xFFFFFFEE

STRB.W R3, [atr, #0x26]

ADD.W R6, atr, #0x12

SUB.W R9, R9, atr

ADD R10, PC 1

T

Stack-Overflow

M 1 _num is computed from masked atr—>t0 with a single instruction
M Glitching this instruction will cause the usgaeo of a non-masked value, and leads to
overflow

x X

OK! but Wookey has stack cookies!

M Are you sure?

Hardware : Fault injection, smartcard library . .

P y ____vemno B &
There are no xrefs to _ stack_chk_fail
Don't display this message again (for this session only)

EXPORT __stack_c

0K Help
__stack_chk_fail
LDR RO, =(aFailedToCheckT - 0x80C0030)
PUSH {R3,LR}
ADD RO, PC
BL printf
svc 0
———v
s =

loc_80C0034
B loc_80C0034

I —. |

Stack cookie code present, but not used

Hardware : Fault injection, smartcard library

config STACK_PROT_FLAG
bool "Activate -fstack-protection-strong"
default y

config STACKPROTFLAGS
string
default "-fstack-protector-strong"
depends on STACK_PROT_FLAGS

Typo in the build chain

Hardware : Fault injection, PoC

void glitch_me() {
char buffer[16] = {0};
int size = 0;

size = src_buffer[0] & O0xOF;
memcpy (buffer, src_buffer, size);
}
int _main(uint32_t my_id) {

printf ("init done.\n");
glitch_me();
printf("test ends\n");

M Patch the BLINKY demo task to add similar code
B Produce same assembly code for masking length
B UART logs init done. and test ends help to identify the temporal range to target

Hardware

rizontal

"
VDD
hasef

1-2

Ry

'hase}
1»2

UART

NRST

: Fault injection, PoC

I Y '
= 1
AKX = 30.31ms H
AY = 7.600V :
BX = 3047ms !
BY: = 3600V |
jm BXAX = 658.0US et ’
T BY-AY. = -4.000V i LT !
UdX: = 1.520kHz [T \ T

«
S

Hardware : Fault injection, PoC

delay=1568136 width=2
GRDP value : Oxaa
init done.

EXC_RETURN FFFFFFFD
RO 20001FBO
R1 20002268

B Try all delay values in the targeted

temporal range R2 20001FF0
B Expect test ends message on the R3 20001FF0
R4 41414141

UART RS 41414141
M Collect UART logs R6 41414141

B GotsomePC = 0x41414140) R7 ©
R8 4F3
R9
R10
R11
R12
PC 41414140

Hardware : Fault injection, PoC . .

Low reproduction rate

| Targeted code is after bootloader, OS initialization, many hardware interactions, etc.
B Execution of the targeted instruction is not stable

B Can be improved : 7 FPGA cycle look to be the optimal width value

10 .

9 e o0 o o o o - ¢« o o .

8 . . ses o ce o -
£
5 7 -ens s S0 0 CBE & CE0 CEBNE O WMICO SWNS S0 8 S 8 Wme o anes s
H

6 . s s = e . s . - ss sss . .

5 oo .

4 . o o . .

3079500 3080000

3080500 3081000 3081500
delay

Successful glitches parameters

Hardware : Fault injection, PoC

On the real device

B This research has only been done on the discovery board
B Attack on real devices require to implement smartcard protocol in the glitch setup
B Fault injection can be synchronized with ISO7816 frames to improve the reproduction

rate

Conclusion : Impacts . .

M Glitch on the smartcard library allows gaining code execution
B can be chained with the EoP (syscall bug) to gain privileged code execution

M Clone, by injecting dumped encrypted secret in a new Wookey
[| Modify firmware, privileged code can alter flash data

Conclusion : Impacts

Encrypted data

B Wookey design relies on smartcard for cryptographic operations

B Gaining code execution before user authentication does not allow decrypting data

B complex attack scenarios (clone, steal and modify) can be used by an attacker to gain
access to decrypted data

. QUESTIONS?

THANK YOU FOR YOUR ATTENTION

1 SYNACKTIV

I EDIGITAL SECURITY

	Introduction
	Wookey presentation
	Challenge
	Software analysis
	Hardware analysis
	Conclusion

