


Who are we?

David BERARD

Security researcher @Synacktiv
Vulnerability research & exploitation

Jérémie BOUTOILLE

Security researcher @Synacktiv
Vulnerability research & exploitation

Synacktiv

Offensive security company
Based in France
~70 Ninjas
We are hiring !!!

www.synacktiv.com
www.synacktiv.com


3/40

Introduction

CESTI Challenge

Organized every two years to evaluate ITSEF/CESTI laboratories
Until this year :

Two challenges were organized, one for hardware CESTIs, and one for software CESTIs
CESTIs have different products to evaluate depending on their agreement categories.

This year a unique challenge has been organized on a unique product
The objective is to evaluate software laboratories to do hardware testing and vice versa
Common target :Wookey



Wookey

What is Wookey

Open-Source and Open-hardware
Developed by ANSSI
Secure USB storage device

Encrypted data on an SD card
Authentication through a touchscreen
Double authentication : PET & User PIN

Multiple smartcards are used for
cryptographic operations

User smartcard for authentication and
data decryption
DFU smartcard to enter in update mode
Firmware signature

Firmware is unique per device (contains
encrypted secrets)



5/40

Wookey : Hardware

Hardware design

Main MCU : STM32F4
JTAG only on debug boards
Production boards rely on Read Out
Protection (RDP=2) to disable JTAG
MPU used for the multitask OS

Used interfaces
SPI for the display
ISO7816 to communicate with the
smartcard
Buttons for DFU mode and reset
USB HS/LS for USB Mass Storage
UART for logs (may be used as input on
debug board)



6/40

Wookey : Software

Developers

Full software stack developed by ANSSI and available on Github

Languages

Bootloader : C
Micro-Kernel : ADA
Drivers and Task : C

OS
Cortex-m4 MPU is used to isolate tasks
Syscalls are handled by the ADA Micro-Kernel
Task and drivers have permissions that are verified by the kernel in syscalls



Challenge Scope

Methodology

1 CESTI asked to write a full test plan
2 ANSSI reviewed test plan and selected few tests (hardware and software)
3 CESTI do their analysis based on selected tests

3 boards were given to CESTIs : prod board, dev board, STM32F4 discovery
4 CESTI write their assessment report and send it to ANSSI
5 ANSSI will organize a debriefing session with all CESTIs

Synacktiv selected tests

SW : ADA kernel syscalls analysis and fuzzing
SW : Fuzzing of the ISO7816 library which handles smartcard messages
HW : Review of the secure channel establishment
HW : Analysis of the RDP2 protection (used to disable JTAG) regarding its resistance
to power glitches



Software : Syscall fuzzing

Very basic Syscall fuzzer

On a development board
Syscall fuzzer is built inside a userland task
Choose a random syscall number
Choose argument values in a list that contains

random values
limit values
valid pointer pointing to random data
…

Collect result on the UART : kernel crash logs on it
(even on the production boards)



9/40

Software : Syscall fuzzing

Results

Quickly got multiple crashes on
multiple syscalls
One of them allows writing a
zero (32bits) at an arbitrary
address !
Trivial exploit

MPU_CTRL register is
memory mapped and allows
to disable the MPU
MPU is the only feature used
to isolate task memory
Without MPU, tasks can read
and write the kernel



10/40

Software : Syscall review

Code review
ADA is not so easy to read for people not familiar with it (like us).
Some low impact bugs found

Results
ADA protect you from basic memory bugs, but for a OS kernel the same bug classes as
C can be present
Use of ada.unchecked_conversion have to be double-checked
Fuzzer found bugs we didn’t find during code audit.



11/40

Software : lib7816 fuzzing

Coverage guided fuzzing

C library
Easy to make it standalone
Parse smartcard messages on a X64 PC
Libfuzzer + ASAN

Result
Good coverage
No bug found
Studing this library was helpful for hardware tests.



Hardware : Secure channel

Decoding ISO7816 frames

Logic analyzer to capture traffic from/to the smartcard
Modification of the ISO7816 Saleae decoder to add a
PCAP export
Custom Wireshark dissector to parse Wookey specific
frames



13/40

Hardware : Secure channel

from this



14/40

Hardware : Secure channel

to this



15/40

Hardware : RDP

STM32 Read Out Protection
STM32 Debug functionalities can be limited/disabled with this protection
RDP configuration is saved in options bytes
1 byte for 3 different states :

RDP0 : 0xAA No protection (default), JTAG is enabled
RDP2 : 0xCC All debug features are disabled, no JTAG
RDP1 : All other values : Flash memory is protected against reading

No downgrade possible from RDP2

STM32 Read Out Protection : Fault attack
Many public research on the subject on STM32F1, STM32F2 and STM32F3 (power
glitches, EM, laser)
Downgrade from RDP2 to RDP1 by injecting fault during the BootROM startup
A single bit flip when BootROM reads RDP option byte allows the downgrade

RDP1 state is coded with many values
A public research show how the RDP1 state can be bypassed



16/40

Hardware : RDP

STM32 Read Out Protection : Wookey

Wookey uses RDP2 to disable all debug features
Wookey developers are aware of these vulnerabilities, the bootloader contains
mitigations

Double checks are implemented in critical places
RDP value is read by the bootloader and checked with 0xCC (RDP2)

In case of anomaly detection tasks are erased from the flash
Our objective : fault Wookey’s STM32F4 RDP with a single fault with cheap hardware



17/40

Hardware : Power glitches setup

Board selection
The Wookey board should not be modified
Wookey project can be built for STM32F4 discovery board
Discovery boards are not expensive, we can risk to break some
Full schematics are available online



18/40

Hardware : Power glitches setup

External MCU power supply

To inject power glitches power supply
must be finely controlled
On discovery board a jumper can be
removed to place an ampere meter (in
blue)

Can be used to isolate the board
internal power supply
External power supply can be
connected on these PINs

Reset PIN is available on headers



19/40

Hardware : Power glitches setup

removing Decoupling capacitors

To inject power glitches power supply
must be finely controlled
Decoupling capacitors are here to
stabilize MCU power supply
Fault will be injected with power pulses
Decoupling capacitors absorb such
rapid power changes
Unsolder them! (in red)



20/40

Hardware : Power glitches setup

Test bench

External power : DPS3005 ~30€
Multiplexer : MAX4619 ~1€
FPGA : Arty A7-100T ~200€
SWD probe : Another STM32F4
discovery board

FPGA
Drive multiplexer to switch from external power to ground
Forward Wookey’s UART logs to the PC
Drive Wookey RST to reboot board



21/40

Hardware : Power glitches setup



22/40

Hardware : Fault injection, pulse generation

Pulse parameters

1 PC sends width and delay parameters to the FPGA (counted in FPGA cycle : 1ns)
2 FPGA toggles RST
3 FPGA waits delay cycles
4 FPGA toggles multiplexer control PIN : MCU power is now connected to ground
5 FPGA waits width cycles
6 FPGA toggles multiplexer control PIN : MCU power is now reconnected to power supply
7 PC tries a JTAG connection

PC collects UART logs during all these operations



23/40

Hardware : Fault injection, parameters

Find correct fault parameters

Try all combinations of width and delay
Width : 1 to 15 FPGA cycles

MCU doesn’t survive if glitches are more than 15 cycles wide
Delay : 0 to 52 000 cycles

Easy to spot the bootloader initialization by looking at the UART



24/40

Hardware : Fault injection, parameters



25/40

Hardware : Fault injection, parameters



26/40

Hardware : Fault injection, collect data

On each try

Try JTAG connection
Collect bootloader logs for futur analysis



27/40

Hardware : Fault injection, results

RDP downgrade : Results

Wookey protections are resistant
Bootloader detects RDP inconsistency
Erase sensitive data and reboot the board

Bootloader glitches

Many glitches detected in UART log
PANIC
Values modification
State machine state changes

Replaying parameters (glitch + delay) give a good reproduction rate
Only the bootloader has protections
Other software components can also be targeted



28/40

Hardware : Fault injection, enlarge your scope

libiso7816
Already analyzed / fuzzed, no vulnerabilities found
Handle smartcard messages before user authentication
Rapid source code review to find a place where a glitch can create a software
vulnerability



29/40

Hardware : Fault injection, smartcard library

Answer To Reset message

ATR is the first message from the smartcard after reset
Parsed by libiso7816

ATR parsing

atr->h is a 16 bytes long stack buffer
atr->t0 value comes from the smartcard
If a glitch affects h_num value a stack-overflow can occur



30/40

Hardware : Fault injection, smartcard library

Stack-Overflow
h_num is computed from masked atr->t0 with a single instruction
Glitching this instruction will cause the usgaeo of a non-masked value, and leads to
overflow

OK! but Wookey has stack cookies !

Are you sure?



31/40

Hardware : Fault injection, smartcard library

Stack cookie code present, but not used



32/40

Hardware : Fault injection, smartcard library

Typo in the build chain



33/40

Hardware : Fault injection, PoC

void glitch_me() {
char buffer[16] = {0};
int size = 0;

size = src_buffer[0] & 0x0F;
memcpy(buffer, src_buffer, size);

}
int _main(uint32_t my_id) {

// [...]
printf ("init done.\n");
glitch_me();
printf("test ends\n");

Patch the BLINKY demo task to add similar code
Produce same assembly code for masking length
UART logs init done. and test ends help to identify the temporal range to target



34/40

Hardware : Fault injection, PoC



35/40

Hardware : Fault injection, PoC

Try all delay values in the targeted
temporal range
Expect test ends message on the
UART
Collect UART logs
Got some PC = 0x41414140 :-)



36/40

Hardware : Fault injection, PoC

Low reproduction rate

Targeted code is after bootloader, OS initialization, many hardware interactions, etc.
Execution of the targeted instruction is not stable
Can be improved : 7 FPGA cycle look to be the optimal width value

Successful glitches parameters



37/40

Hardware : Fault injection, PoC

On the real device
This research has only been done on the discovery board
Attack on real devices require to implement smartcard protocol in the glitch setup
Fault injection can be synchronized with ISO7816 frames to improve the reproduction
rate



Conclusion : Impacts

On the device
Glitch on the smartcard library allows gaining code execution
Can be chained with the EoP (syscall bug) to gain privileged code execution

Scenario
Clone, by injecting dumped encrypted secret in a new Wookey
Modify firmware, privileged code can alter flash data



39/40

Conclusion : Impacts

Encrypted data

Wookey design relies on smartcard for cryptographic operations
Gaining code execution before user authentication does not allow decrypting data
Complex attack scenarios (clone, steal and modify) can be used by an attacker to gain
access to decrypted data



THANK YOU FOR YOUR ATTENTION

QUESTIONS?


	Introduction
	Wookey presentation
	Challenge
	Software analysis
	Hardware analysis
	Conclusion

