
1

Discovering and exploiting
a kernel pool overflow on

modern Windows 10

Sthack 2021

2 / 68

22~:$ whoami

 Fabien Perigaud
 @0xf4b on Twitter

 Working for Synacktiv
 Offensive security
 90 ninjas: pentest, reverse engineering, development
 We are hiring!

 Reverse engineering team technical leader
 30 reversers
 Reverse, vulnerability research and exploitation, low level dev

3 / 68

33Agenda

 This short introduction
 Pwn2Own Vancouver 2021
 Windows 10 Kernel Attack Surface
 Vulnerability Discovery
 Exploitation: “expecting shell root”
 Results and Conclusion

4

Pwn2Own Vancouver 2021

5 / 68

55Pwn2Own

 “Hacking contest” by ZDI
 Prove exploitation of devices or software in widespread use

 Usually takes place twice a year
 Vancouver: virtualization, browsers, OS, Tesla, ...
 Tokyo: smartphones, “smart devices”, routers, printers, …
 Miami 2020: ICS/SCADA

 Pwn all the things!
 Payload should prove arbitrary code execution
 Remote/elevated shell, blinking leds on a router, image display on a

printer…

6 / 68

66Pwn2Own - Rules

 Each category has its own rules...
 … but rules can be adapted if kindly asked :)
 For example, enabling a non-default service…
 … as long as this configuration matches reality!

 5 minutes time slot, up to 3 attempts
 Exploit can be time consuming (race condition, huge allocations,

…)
 Stability can be perfectible :)

7 / 68

77Pwn2Own – Rules (2)

 For each target, only the first pwn is considered a WIN
 In practice, every successful pwn is a WIN…
 … unless a vulnerability collision occurs…
 … between contestants, or with the vendor!

 Order of the contestants is drawn at random
 Small papers in a hat :)
 In the end, Synacktiv contestants usually get the last slot

8 / 68

88Pwn2Own – Rewards

 Each pwned target is rewarded, depending on the estimated
difficulty
 Cash prize (way lower than the 0-day market, but still

interesting :))
 Master of Pwn points → additional cash prize for the “Master of

Pwn”
 Add-on bonus

 For some targets
 LPE, sandbox escape, …
 Usually a few more points and dollars

9 / 68

99Pwn2Own Vancouver 2021

 Targets
 Desktop browsers (Chrome, Safari, Firefox, Edge)
 Enterprise applications (Office, Reader, Zoom, Teams)
 Server (RDP, Exchange, SharePoint)
 Automotive (Tesla Model 3)
 Local Privilege Escalation (Windows, Ubuntu)

 LPEs: “easier” targets!

10 / 68

1010Pwn2Own Vancouver 2021 – Windows 10 LPE

 Focus on the Windows 10 LPE

 Interesting execution context
 Unprivileged user…
 … but no sandboxing!

 Medium integrity level

 Vulnerability must be in the kernel

11

Windows 10 Kernel Attack Surface

12 / 68

1212Kernel Attack Surface

 Ntoskrnl
 Windows kernel image
 Interrupts, memory management, kernel objects (processes, threads, files,

registry, …), syscalls and more
 Very interesting target, might be reachable from the hardest sandbox level
 Drawback: huge focus from security researchers

 Win32k
 Huge graphic subsystem, own syscall table
 Old code base, many vulnerabilities
 Also reachable from some sandbox contexts
 Drawback: also a huge focus from security researchers

13 / 68

1313Kernel Attack Surface - Drivers

 Drivers
 PE loaded in Kernel-land
 “.sys” file on the disk
 Usually linked to a service

 Userland access
 Driver create a Device object “XXX”
 Userland opens the device through “\\?\GLOBALROOT\Device\

XXX”

14 / 68

1414Kernel Attack Surface - Devices

 List all the devices present on a default Windows 10
 WinDBG to the rescue!
 !object \Device → 159 devices

0: kd> !object \Device
Object: ffff988952031060 Type: (ffffaf07a6c71900) Directory
 ObjectHeader: ffff988952031030 (new version)
 HandleCount: 2 PointerCount: 65717
 Directory Object: ffff988952041e60 Name: Device

 Hash Address Type Name
 ---- ------- ---- ----
 00 ffffaf07adaafcb0 Device 00000030
 ffffaf07ad94a050 Device NDMP2
 ffffaf07a82c8360 Device NTPNP_PCI0002
 01 ffffaf07ad9d2050 Device NDMP3
 ...

15 / 68

1515Check devices access

 Dumb/dirty way to check access rights
 Try to open device with R/W access
 Fast to write with Python ctypes

for dev in devices:
 file_handle = windll.kernel32.CreateFileA("\\\\?\\GLOBALROOT\\Device\\
%s" % dev, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, 0)
 if file_handle != INVALID_HANDLE_VALUE:
 print("[*] OK %s" % dev)

16 / 68

1616Check devices access (2)
C:\Users\unpriv\Desktop>check_devices.py
...
[*] OK Afd
[*] OK ahcache
[*] OK Beep
[*] OK CNG
[*] OK gpuenergydrv
[*] OK KsecDD
[*] OK LanmanDatagramReceiver
[*] OK Mailslot
[*] OK Mup
[*] OK NamedPipe
[...]
[*] OK Netbios
[...]
[*] OK Null
[*] OK PEAuth
[*] OK RdpBus
[*] OK Spaceport
[*] OK Tdx
[*] OK USBFDO-0
[*] OK USBPDO-0
[*] OK VBoxGuest
[*] OK WindowsTrustedRT
[*] OK WINDRVR6

17 / 68

1717Pick a victim

Afd ahcache Beep CNG gpuenergydrv

KsecDD LanmanDatagramReceiver Mailslot Mup NamedPipe

Netbios Null PEAuth RdpBus Spaceport

Tdx USBFDO-0 USBPDO-0 VBoxGuest

WinDRV6 WindowsTrustedRT

18 / 68

1818Pick a victim

Afd ahcache Beep CNG gpuenergydrv

KsecDD LanmanDatagramReceiver Mailslot Mup NamedPipe

Netbios Null PEAuth RdpBus Spaceport

Tdx USBFDO-0 USBPDO-0 VBoxGuest

WinDRV6 WindowsTrustedRT

19 / 68

1919Pick a victim

Afd ahcache Beep CNG gpuenergydrv

KsecDD LanmanDatagramReceiver Mailslot Mup NamedPipe

Netbios Null PEAuth RdpBus Spaceport

Tdx USBFDO-0 USBPDO-0 VBoxGuest

WinDRV6 WindowsTrustedRT

20 / 68

2020Pick a victim

Afd ahcache Beep CNG gpuenergydrv

KsecDD LanmanDatagramReceiver Mailslot Mup NamedPipe

Netbios Null PEAuth RdpBus Spaceport

Tdx USBFDO-0 USBPDO-0 VBoxGuest

WinDRV6 WindowsTrustedRT

21 / 68

2121Find the corresponding driver

 WinDBG again

0: kd> dt nt!_DEVICE_OBJECT ffffaf07a83320a0
 +0x000 Type : 0n3
 +0x002 Size : 0xc58
 +0x004 ReferenceCount : 0n0
 +0x008 DriverObject : 0xffffaf07`a8323cf0 _DRIVER_OBJECT
[...]
0: kd> !object 0xffffaf07`a8323cf0
Object: ffffaf07a8323cf0 Type: (ffffaf07a6cca380) Driver
 ObjectHeader: ffffaf07a8323cc0 (new version)
 HandleCount: 0 PointerCount: 5
 Directory Object: ffff988952132220 Name: spaceport

22 / 68

2222Find the corresponding driver

 Corresponding service in the registry

23

Vulnerability Discovery

24 / 68

2424Driver interaction

 Driver Object can have 28 defined Major Functions
 Open / Close
 Read / Write
 IOCTL
 Etc.

 Usually defined in the DriverEntry function
 IOCTLs are usually the first thing to look at ...
 … but others are also less analyzed!

25 / 68

2525Driver interaction – Major Functions

26 / 68

2626Driver interaction – Major Functions

27 / 68

2727SpControlDeviceControl

 58 handled IOCTLs

 Manual review
 Focus on “SpIoctl[Create|Set].*”
 Ignore when privileges are checked (“SpAccessCheck.*”)

28 / 68

2828SpControlDeviceControl

 Many checks are missing
 When the research was performed :)

 Several vulnerabilities have been found!
 Constraints to be reachable
 Might require creation of objects from a privileged context

 Might be OK in real life, not for the contest

 One really interesting vulnerability

29 / 68

2929SpIoctlSetControlWork

 No permission check
 Buffer overflow 101

 Controlled memcpy size
 Controlled content

30 / 68

3030SpIoctlSetControlWork

 No permission check
 Buffer overflow 101

 Controlled memcpy size
 Controlled content

Dest:
pool (heap)
buffer

31 / 68

3131SpIoctlSetControlWork

 No permission check
 Buffer overflow 101

 Controlled memcpy size
 Controlled content

Source:
user controlled
buffer

32 / 68

3232SpIoctlSetControlWork

 No permission check
 Buffer overflow 101

 Controlled memcpy size
 Controlled content

Size:
from user
controlled
buffer

33 / 68

3333SpIoctlSetControlWork – Reaching the bug

 SpIoctlSetControlWork looks for a SP_WORK_INFO in a
doubly-linked list (“LIST1”)
 Identified by a provided ID

 “LIST1” is populated by another IOCTL: SpIoctlGetControlWork
 Gets an entry from another doubly-linked list (“LIST2”)
 Put it in “LIST1” and return its ID

 “LIST2” is populated by SP_CONTROL_WORK::Run
 Reachable from several IOCTLs
 SpIoctlAttachSpaceRemote is a good candidate

34 / 68

3434Workflow

 If we call the IOCTLs sequentially
 Stuck when calling SpIoctlGetControlWork → we never get an ID

 What’s happening?

35 / 68

3535Usual workflow

xxx.exe

spaceport.sys

SpIoctlAttachSpaceR
em

ote

36 / 68

3636Usual workflow

xxx.exe

spaceport.sys

spaceman.exe

SpIoctlAttachSpaceR
em

ote

Spa
wns

 (W
NF)

37 / 68

3737Usual workflow

xxx.exe

spaceport.sys

spaceman.exe

SpIoctlAttachSpaceR
em

ote

Spa
wns

 (W
NF)

S
pIoctlG

etC
ontrolW

ork

38 / 68

3838Usual workflow

xxx.exe

spaceport.sys

spaceman.exe

SpIoctlAttachSpaceR
em

ote

Spa
wns

 (W
NF)

S
pIoctlG

etC
ontrolW

ork

S
p

IoctlS
etC

o
ntrolW

ork

39 / 68

3939Usual Workflow

 If we call the IOCTLs sequentially, we get raced by spaceman.exe
 No more ID to be retrieved by SpIoctlGetControlWork

 However…
 … meet asynchronous DeviceIoControl!
 Call SpIoctlGetControlWork before SpIoctlAttachSpaceRemote

 List is empty, driver puts the request on hold
 IRP is queued, and dequeued when SP_CONTROL_WORK::Run is

executed
 When spaceman.exe is executed, it has been raced by us :)

40 / 68

4040PoC

 Thread #1 → call SpIoctlGetControlWork
 Async, wait for result

 Thread #2 → call SpIoctlAttachRemoteSpace
 Blocked until someone issues a SpIoctlSetControlWork

 Thread #1 → ID retrieved, call SpIoctlSetControlWork with
bogus length

41 / 68

4141PoC - BSOD

rax=ffffaf07b1584ed0 rbx=0000000000000000 rcx=ffffaf07f39a9112
rdx=fffffffffa81d190 rsi=0000000000000000 rdi=0000000000000000
rip=fffff80465dfa343 rsp=ffffc106ae2686d8 rbp=fffff80465e32048
 r8=0000000042424242 r9=ffffaf07a83321f0 r10=0000000000000000
r11=ffffaf07ee1c62a2 r12=0000000000000000 r13=0000000000000000
r14=0000000000000000 r15=0000000000000000
iopl=0 nv up ei ng nz na po nc

spaceport!memcpy+0x203:
fffff804`65dfa343 0f104411f0 movups xmm0,xmmword ptr [rcx+rdx-10h]
ds:ffffaf07`ee1c6292=????????????????????????????????

ffffc106`ae2686d8 fffff804`65df6f19 : [...] : spaceport!memcpy+0x203
ffffc106`ae2686e0 fffff804`65e4c12b : [...] : spaceport!SP_CONTROL_WORK::Set+0xd9
ffffc106`ae268740 fffff804`65e41d7e : [...] : spaceport!SpIoctlSetControlWork+0x5b
ffffc106`ae268780 fffff804`65df3f50 : [...] : spaceport!SpControlDeviceControl+0x2ee

42

Exploitation: “expecting shell root”

43 / 68

4343Vulnerability primitive

 Pool overflow
 The pool is the Windows Kernel heap

 Target allocation
 SP_WORK_INFO allocation is made in the NonPagedPoolNx
 Size is 0x160 bytes
 Lies in the LFH (Low Fragmentation Heap)

 Overflow constraints
 None :)
 We control content and size

44 / 68

4444Mitigations

 kASLR
 Not a problem, Medium integrity level
 Various kernel APIs to get objects and modules addresses

 DEP / SMEP / CFG
 Kernel code execution is hard
 Data-only exploitation ftw!

 SMAP?
 Only in a few contexts, not in ours :)

45 / 68

4545Exploitation strategy

 Data only
 We want to run an elevated cmd.exe

 Target: process Token!
 Swap token with a privileged one? (System)
 Or enable powerful privileges!

 Let’s turn our pool overflow into something interesting!

46 / 68

4646La French Tech – SSTIC 2020

47 / 68

4747La French Tech – SSTIC 2020

 Aligned Chunk Confusion
 New generic pool overflow exploitation method
 Abuses the CacheAligned bit in the POOL_HEADER
 Read their paper for details!

 Requirements
 Shape the pool to control the chunk after the vulnerable one

48 / 68

4848Pool massaging

 Spray a bunch of 0x160 bytes allocations in NonPagedPoolNx
 We can use pipe objects
 PipeQueueEntry is in the NonPagedPoolNx, and we can control its

size
QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry

49 / 68

4949Pool massaging

 Spray a bunch of 0x160 bytes allocations in NonPagedPoolNx
 We can use pipe objects
 PipeQueueEntry is in the NonPagedPoolNx, and we can control its

size

 Free a few ones to create holes

QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry

QueueEntry Free QueueEntry QueueEntry QueueEntry QueueEntry Free QueueEntry QueueEntry

50 / 68

5050Pool massaging

 Spray a bunch of 0x160 bytes allocations in NonPagedPoolNx
 We can use pipe objects
 PipeQueueEntry is in the NonPagedPoolNx, and we can control its

size

 Free a few ones to create holes

 Our vuln chunk should lie in one of these holes

QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry QueueEntry

QueueEntry Free QueueEntry QueueEntry QueueEntry QueueEntry Free QueueEntry QueueEntry

QueueEntry Free QueueEntry QueueEntry QueueEntry QueueEntry Vuln Chunk QueueEntry QueueEntry

51 / 68

5151Creating an overlapping chunk

 We can now trigger the overflow to change the next chunk
(called victim) POOL_HEADER
 poolType set to 4 → CacheAligned
 previousSize set to 0x100

 When freeing the victim, the allocator will look for a second
POOL_HEADER 0x100 bytes before the chunk
 This creates a fake chunk of 0x260 bytes (0x160+0x100)

 Caveat: after exploitation, our vuln chunk is freed
 We reuse it with a controlled PipeQueueEntry!

52 / 68

5252Creating an overlapping chunk - Graphics

Vuln ChunkPool
Header PipeQueueEntryPool

Header

Vuln ChunkPool
Header PipeQueueEntryPool

Header

Overflow

Free ChunkPool
Header PipeQueueEntry

New
Pool

Header

New PipeQueueEntry Pool
Header PipeQueueEntry

New
Pool

Header

Fake
Pool

Header

53 / 68

5353Creating an overlapping chunk – Next steps

 We chose a size of 0x260 bytes for our fake chunk
 LFH is for allocations < 0x200
 Bigger allocations are handled by the VS (variable size) allocator
 Lookaside lists can be enabled for faster allocations!

 When the victim chunk is freed
 Fake POOL_HEADER is read
 Fake chunk is added to the 0x260 bytes lookaside list

 We can now make a new allocation of 0x260 bytes to reuse the fake
chunk!

54 / 68

5454Creating an overlapping chunk – Result

 Leak by reading the first pipe
 Gives the PipeQueueEntry structure content

PipeQueueEntryPool
Header

PipeQueueEntryPool
Header

Overlapping chunks

55 / 68

5555PipeQueueEntry structure

struct PipeQueueEntry {
LIST_ENTRY list;
IRP *IRP;
uint64_t security;
int isDataInKernel;
int remaining_bytes;
int DataSize;
int field_2C;
char data[0];

};

if (PipeQueueEntry->isDataInKernel == 1)
data_ptr = (PipeQueueEntry->linkedIRP->SystemBuffer);

else
data_ptr = PipeQueueEntry->data;

List of PipeQueueEntry structures

56 / 68

5656Arbitrary Read Primitive

 Free the first PipeQueueEntry
 Reuse the chunk

 We can overwrite the second PipeQueueEntry structure
 Change the linkedIRP pointer to make it point to userland

PipeQueueEntry

*linkedIRP

isDataInKernel = 1

IRP

SystemBuffer

Useful Kernel Data

Userland

Kernel

57 / 68

5757Attacking the ProcessBilled pointer

 POOL_HEADER has a ProcessBilled field
 Obfuscated pointer to an EPROCESS
 If PoolQuota flag is set, EPROCESS→QuotaBlockPtr→value is

decremented when allocation is freed

 Arbitrary decrement primitive
 Requires ability to forge a new obfuscated pointer
 ProcessBilled == @EPROCESS ^ @chunk ^ ExpPoolQuotaCookie

58 / 68

5858Finding ExpPoolQuotaCookie

 From Medium Integrity Level, kernel APIs can be used to get a
kernel address from a handle
 NtQuerySystemInformation(SystemHandleInformation)
 We have our EPROCESS address!

 In the previous leak
 We got our PipeQueueEntry address through the doubly-linked list
 We got its POOL_HEADER ProcessBilled

 ExpPoolQuotaCookie can be computed

59 / 68

5959Arbitrary decrement to privilege escalation

 A process Token contains its privileges
 Strategy: decrement “Enabled” and “Present” fields to enable

SeDebugPrivilege
 We build a fake EPROCESS which QuotaBlockPtr points to the

target field
 2 more reuses needed to change the ProcessBilled twice

POOL_HEADER

PoolType = PoolQuota

Tag

ProcessBilled =
PEPROCESS ^ Cookie ^ Address

Fake EPROCESS

Fake EPROCESS

QuotaBlockPtr

QuotaBlockPtr

ProcessToken

Privileges.Present

Privileges.Enabled

[1]

[2]

60 / 68

6060SeDebugPrivileges

 Allow debugging every process on the system

 Strategy
 Open winlogon.exe
 Inject shellcode
 Spawn a SYSTEM cmd.exe

 Quick demo!

61

Results and Conclusion

62 / 68

6262Pwn2Own results

 Exploit worked at first attempt \o/

 Debriefing with ZDI
 Bug is unknown to ZDI \o/ \o/

 Debriefing with Microsoft
 … bug is already known to Microsoft …
 They proved it by showing the bug report

 Partial Win :(

63 / 68

6363Timeline

 ?? ?? ???? - Vulnerability reported to Microsoft by “vbty”
(according to Microsoft advisory)

 8 April 2021 – Vulnerability exploited during P2O
 13 July 2021 – Vulnerability fixed by Microsoft (CVE-2021-

33751)

64 / 68

6464Fix

65 / 68

6565Free 0day?

66 / 68

6666Additional fix...

67 / 68

6767Final words

 A generic pool overflow exploitation method exists!
 … and works on real cases!
 Thanks to the new kernel pool from 19H1

 Try Pwn2Own!
 Some targets do not require so much effort
 Attack surface is quite huge!

68

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Nos publications sur : https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

