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22Who are we?

 Antoine Cervoise & Mickaël Benassouli
 Pentesters
 Not MobSF developers / maintainers

 Working for Synacktiv
 Offensive security
 100 ninjas: pentest, reverse engineering, development, incident 

response
 We are hiring!
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33Introduction

Source: Mobile Vs. Desktop Internet Usage (Latest 2022 Data) - BroadbandSearch https://www.broadbandsearch.net/blog/mobile-

desktop-internet-usage-statistics  



  

4 / 36

44Agenda

 Reminder about mobile applications
 MobSF presentation
 Usecases for pentest

 Mobile application security review 
 Mobile application analysis for red teaming

 MobSF limitations
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55

Mobiles applications
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66Mobile Application

 Nowadays
 Android
 iOS

 From the past
 Windows Phone
 Blackberry
 Window Mobile
 Symbian
 ...
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77Android application

 APK (Android Package Kit)
 A ZIP file containing  program's code (such as .dex files), libraries, 

resources, assets, certificates, and manifest file
 Written in Java or Kotlin

 Frameworks exist in order to develop application in other languages 
such as .NET with Xamarin

 AAB (Android App Bundle)
 AAB is push to the store, a personalized APK is downloaded from 

the store on the device
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88iOS application

 IPA
 A ZIP file containing application resources and binaries (machO 

files)
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99Mobile application review

 Dedicated penetration test
 Vulnerabilities in the mobile application or its dependencies

 https://owasp.org/www-project-mobile-security-testing-guide/
 Bypass of anti-cheat measure
 Entry points for penetration testing on the server

 Recon on a larger scope
 IP / URL / emails
 Credentials
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1010

MobSF
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1111MobSF

 Mobile SecurityFramework
 Licence: GPL 3
 Available on GitHub

 https://github.com/MobSF/Mobile-Security-Framework-MobSF
 Online analyzer

 https://mobsf.live/
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1212MobSF Features

 Android review
 Application: Static and dynamic analysis
 Source code: Static analysis

 iOS review
 Application: Static analysis 
 Source code: Static analysis

 Windows Phone App
 Static Analysis
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1313MobSF installation

 Can be launched with docker / kubernetes 

 Made python / Oracle JDK / macOS, Linux, Windows
 Hosted only

$ docker pull opensecurity/mobile-security-framework-mobsf:latest

$ mkdir -p $1/mobsf/

$ chmod -R 777 $1/mobsf

$ docker run -it --rm --name mobsf -p 8000:8000 -v 
$1/mobsf/:/home/mobsf/.MobSF/ opensecurity/mobile-security-framework-
mobsf:latest
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1414MobSF architecture
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1515What are we missing

 Android dynamic analysis
 iOS source code review
 Windows applications review
 MobSF in CI/CD
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1616

Usecases for Pentesters
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1717Mobile application security review

 Demo time!
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1818Mobile application security review

 App Score
 Quick overview for security score
 SDK Version and Android Code Version

 Application Signer Record
 Quickly identified issuer and verify certificate
 Here first check for countermeasure

 Cipher Algo for signing
 Code Signing
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1919Mobile application security review

 Application Permissions
 What they need for working.
 Quickly identify dangerous permissions for pentester
 Attack scenarios for red teamer

 Manifest Analysis
 The manifest file record also reveals the security flaws found in 

the target application
 Need to understand the architecture of the Android OS to assess 

its actual criticalness
 A good starting point for analysis, but can be huge too
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2020Mobile application security review

 Code Analysis
 Analysis result of java-code by a static analyzer
 Detect here countermeasures like

 Anti Root
 Pinning

 Can be false positive and need to be check by reading code
 NIAP Analysis

 Good conformity
 Pentester? Your first free vulnerabilities
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2121Mobile application security review

 File / URLs / Text File
 Check if files is marked as infected
 URLs tab shows where the data have been send
 Where the information have been stored
 Text file, is a lazy grep for searching quick pattern in code
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2222
Mobile application analysis

 for red teaming

 Use cases
 Penetration testing on a web application that provide a mobile 

application
 Red Team
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2323
Mobile application analysis

 for red teaming

 What are we looking for?
 IP addresses / Domains
 “hidden” folders
 Credentials (login/password, JWT, API keys…)

 Or just a “valid” User-Agent
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2424
Mobile application analysis

 for red teaming

 MobSF feature - Reconnaissance
 URLs
 Emails
 Strings
 Hardcoded Secrets

 Look for specific patterns in strings names
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2525Limits

 Hardcoded Secrets
 does not check into plist files (IPA)
 does not check for specific patterns in strings values

 BASIC BASE64
 proto://user:pass@domain
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2626Let’s use the API

 Check for plist files
 Get plist files

 Grep for “password”

$ curl -s -X POST --url http://MOBSF/api/v1/report_json --data "hash=IPA_HASH" -H 
"Authorization:$token" |jq ".file_analysis" |grep ".plist\"" |grep file_path |cut -d 
"\"" -f 4

$ curl -s -X POST –url http://MOBSF/api/v1/view_source --data 
"hash=IPA_HASH&type=ipa&file=$plist" -H "Authorization:$token" |grep -i password
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2727Let’s use the API

 Check for patterns in strings values
 This can be done using

 APKLeaks (https://github.com/dwisiswant0/apkleaks) and Super 
(https://github.com/SUPERAndroidAnalyzer/super)

 They are dedicated to APK
 Super requires Java to run
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2828Automation

 Put everything in a (dirty) script

$ bash mobydeep.sh
Version: 1.0
Usage: mobydeep.sh http(s)://mobsf
Args: 
  -h / --help           : this help
  --get-hashes          : get applications hashes from MobSF
  --plist IPA_hash      : check for credentials in plists files
  --check-strings hash  : check for credentials in strings values
  --check-secrets hash  : return MobSF check for secrets in APP
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2929Find credentials and keep digging

 Check for secrets in strings

$ mobydeep.sh http://localhost:8000 --check-strings 
18*************************************42

"\"**BasicAuth\" : \"Basic UG************************************c=\"",
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3030Find credentials and keep digging

 Looking for the secret usage into the source code

 if (new Connectivity(context).isNetworkAvailable()) {

            try {

                [...]

                Uri.Builder builder = new Uri.Builder();

                
builder.scheme("https").authority("webapp.customer.tld").appendPath(context.getR
esources().getString(R.string.HiddenFolder));

                [...]

            } catch (Exception e) {

                e.toString();

            }
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3131Find credentials and keep digging

 Find the hidden folder
 Solution 1: Decompile the whole app and go look into 

res/values/strings.xml
 Solution 2: Search it in MobSF
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3232Automation issues

 False positive
 Auth BASIC detection
 Plist analysis 
 Maybe more

 Patterns are handle into the script
 no external database/JSON file/whatever



  

33 / 36

3333Scan multiple applications

 Upload them all
 https://github.com/MobSF/Mobile-Security-Framework-MobSF/

blob/master/scripts/mass_static_analysis.py
 Scan them all

$ for app in $(bash mobydeep.sh http://127.0.0.1:8000 --
get-hashes); do 
   echo $elmt; bash mobydeep.sh http://127.0.0.1:8000 --
check-strings $app; 
done
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3434

MobSF limitations
(as a pentester)
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3535MobSF Limitations

 Development of new features needs to be able to develop 
them

 No support for AAR (Android Archive) → libraries files 
 Android dynamic analysis is not easy to configure
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https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/
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