
1

MobSF for pentetration
tester

PassTheSalt 2022

2 / 36

22Who are we?

 Antoine Cervoise & Mickaël Benassouli
 Pentesters
 Not MobSF developers / maintainers

 Working for Synacktiv
 Offensive security
 100 ninjas: pentest, reverse engineering, development, incident

response
 We are hiring!

3 / 36

33Introduction

Source: Mobile Vs. Desktop Internet Usage (Latest 2022 Data) - BroadbandSearch https://www.broadbandsearch.net/blog/mobile-

desktop-internet-usage-statistics

4 / 36

44Agenda

 Reminder about mobile applications
 MobSF presentation
 Usecases for pentest

 Mobile application security review
 Mobile application analysis for red teaming

 MobSF limitations

5 / 36

55

Mobiles applications

6 / 36

66Mobile Application

 Nowadays
 Android
 iOS

 From the past
 Windows Phone
 Blackberry
 Window Mobile
 Symbian
 ...

7 / 36

77Android application

 APK (Android Package Kit)
 A ZIP file containing program's code (such as .dex files), libraries,

resources, assets, certificates, and manifest file
 Written in Java or Kotlin

 Frameworks exist in order to develop application in other languages
such as .NET with Xamarin

 AAB (Android App Bundle)
 AAB is push to the store, a personalized APK is downloaded from

the store on the device

8 / 36

88iOS application

 IPA
 A ZIP file containing application resources and binaries (machO

files)

9 / 36

99Mobile application review

 Dedicated penetration test
 Vulnerabilities in the mobile application or its dependencies

 https://owasp.org/www-project-mobile-security-testing-guide/
 Bypass of anti-cheat measure
 Entry points for penetration testing on the server

 Recon on a larger scope
 IP / URL / emails
 Credentials

10 / 36

1010

MobSF

11 / 36

1111MobSF

 Mobile SecurityFramework
 Licence: GPL 3
 Available on GitHub

 https://github.com/MobSF/Mobile-Security-Framework-MobSF
 Online analyzer

 https://mobsf.live/

12 / 36

1212MobSF Features

 Android review
 Application: Static and dynamic analysis
 Source code: Static analysis

 iOS review
 Application: Static analysis
 Source code: Static analysis

 Windows Phone App
 Static Analysis

13 / 36

1313MobSF installation

 Can be launched with docker / kubernetes

 Made python / Oracle JDK / macOS, Linux, Windows
 Hosted only

$ docker pull opensecurity/mobile-security-framework-mobsf:latest

$ mkdir -p $1/mobsf/

$ chmod -R 777 $1/mobsf

$ docker run -it --rm --name mobsf -p 8000:8000 -v
$1/mobsf/:/home/mobsf/.MobSF/ opensecurity/mobile-security-framework-
mobsf:latest

14 / 36

1414MobSF architecture

15 / 36

1515What are we missing

 Android dynamic analysis
 iOS source code review
 Windows applications review
 MobSF in CI/CD

16 / 36

1616

Usecases for Pentesters

17 / 36

1717Mobile application security review

 Demo time!

18 / 36

1818Mobile application security review

 App Score
 Quick overview for security score
 SDK Version and Android Code Version

 Application Signer Record
 Quickly identified issuer and verify certificate
 Here first check for countermeasure

 Cipher Algo for signing
 Code Signing

19 / 36

1919Mobile application security review

 Application Permissions
 What they need for working.
 Quickly identify dangerous permissions for pentester
 Attack scenarios for red teamer

 Manifest Analysis
 The manifest file record also reveals the security flaws found in

the target application
 Need to understand the architecture of the Android OS to assess

its actual criticalness
 A good starting point for analysis, but can be huge too

20 / 36

2020Mobile application security review

 Code Analysis
 Analysis result of java-code by a static analyzer
 Detect here countermeasures like

 Anti Root
 Pinning

 Can be false positive and need to be check by reading code
 NIAP Analysis

 Good conformity
 Pentester? Your first free vulnerabilities

21 / 36

2121Mobile application security review

 File / URLs / Text File
 Check if files is marked as infected
 URLs tab shows where the data have been send
 Where the information have been stored
 Text file, is a lazy grep for searching quick pattern in code

22 / 36

2222
Mobile application analysis

 for red teaming

 Use cases
 Penetration testing on a web application that provide a mobile

application
 Red Team

23 / 36

2323
Mobile application analysis

 for red teaming

 What are we looking for?
 IP addresses / Domains
 “hidden” folders
 Credentials (login/password, JWT, API keys…)

 Or just a “valid” User-Agent

24 / 36

2424
Mobile application analysis

 for red teaming

 MobSF feature - Reconnaissance
 URLs
 Emails
 Strings
 Hardcoded Secrets

 Look for specific patterns in strings names

25 / 36

2525Limits

 Hardcoded Secrets
 does not check into plist files (IPA)
 does not check for specific patterns in strings values

 BASIC BASE64
 proto://user:pass@domain

26 / 36

2626Let’s use the API

 Check for plist files
 Get plist files

 Grep for “password”

$ curl -s -X POST --url http://MOBSF/api/v1/report_json --data "hash=IPA_HASH" -H
"Authorization:$token" |jq ".file_analysis" |grep ".plist\"" |grep file_path |cut -d
"\"" -f 4

$ curl -s -X POST –url http://MOBSF/api/v1/view_source --data
"hash=IPA_HASH&type=ipa&file=$plist" -H "Authorization:$token" |grep -i password

27 / 36

2727Let’s use the API

 Check for patterns in strings values
 This can be done using

 APKLeaks (https://github.com/dwisiswant0/apkleaks) and Super
(https://github.com/SUPERAndroidAnalyzer/super)

 They are dedicated to APK
 Super requires Java to run

28 / 36

2828Automation

 Put everything in a (dirty) script

$ bash mobydeep.sh
Version: 1.0
Usage: mobydeep.sh http(s)://mobsf
Args:
 -h / --help : this help
 --get-hashes : get applications hashes from MobSF
 --plist IPA_hash : check for credentials in plists files
 --check-strings hash : check for credentials in strings values
 --check-secrets hash : return MobSF check for secrets in APP

29 / 36

2929Find credentials and keep digging

 Check for secrets in strings

$ mobydeep.sh http://localhost:8000 --check-strings
18*************************************42

"\"**BasicAuth\" : \"Basic UG************************************c=\"",

30 / 36

3030Find credentials and keep digging

 Looking for the secret usage into the source code

 if (new Connectivity(context).isNetworkAvailable()) {

 try {

 [...]

 Uri.Builder builder = new Uri.Builder();

builder.scheme("https").authority("webapp.customer.tld").appendPath(context.getR
esources().getString(R.string.HiddenFolder));

 [...]

 } catch (Exception e) {

 e.toString();

 }

31 / 36

3131Find credentials and keep digging

 Find the hidden folder
 Solution 1: Decompile the whole app and go look into

res/values/strings.xml
 Solution 2: Search it in MobSF

32 / 36

3232Automation issues

 False positive
 Auth BASIC detection
 Plist analysis
 Maybe more

 Patterns are handle into the script
 no external database/JSON file/whatever

33 / 36

3333Scan multiple applications

 Upload them all
 https://github.com/MobSF/Mobile-Security-Framework-MobSF/

blob/master/scripts/mass_static_analysis.py
 Scan them all

$ for app in $(bash mobydeep.sh http://127.0.0.1:8000 --
get-hashes); do
 echo $elmt; bash mobydeep.sh http://127.0.0.1:8000 --
check-strings $app;
done

34 / 36

3434

MobSF limitations
(as a pentester)

35 / 36

3535MobSF Limitations

 Development of new features needs to be able to develop
them

 No support for AAR (Android Archive) → libraries files
 Android dynamic analysis is not easy to configure

36

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv

Our publications: https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

