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Presentation
 Jean-Baptiste Cayrou

 Security researcher @Synacktiv
 Vulnerability research & exploitation

 Synacktiv
 Offensive security company
 Based in France
 ~140 Ninjas
 We are hiring!!!

https://twitter.com/Synacktiv
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Introduction
 Android is an open-source project led by Google

 Lastest version is Android 13
 ~70% mobile devices worldwide use Android

 It is based on a Linux kernel with the “binder” driver enabled 
for process interactions

 In userland, applications are Java packages that run in a 
specific JVM
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Introduction
 Our smartphones contain a lot of sensitive data

 Emails and conversations
 Photos and videos

 And they have many sensors
 Camera
 Microphone
 GPS

 Access to this data and sensors must be protected against 
compromised or malicious applications
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Device Threats
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Device Threats
 Applications may be malicious or compromised

 For instance, by exploiting browser vulnerabilities
 It is essential to prevent attackers from accessing:

 Data
 Sensors

 Attackers might bypass restrictions by exploiting other 
system vulnerabilities
 Perform a LPE (Local Privileged Escalation)

→ Reduce the risks and make LPE as difficult as possible
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Security Model
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Security Model
 Android considers applications as untrusted
 Least privilege principle

 Only permit each component to perform necessary actions
 Implement isolation and sandboxing of processes and applications
 Restrict interactions between components

 Hardening and exploit mitigations
 Make vulnerabilities difficult to exploit
 Ideally, make vulnerabilities unexploitable
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Isolation and sandboxing
 Android uses Linux features to isolate applications and 

daemons
 Linux users, groups (DAC security)
 SELinux (MAC security)
 SECCOMP to filter syscalls
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Isolation and sandboxing - Linux users
 Some user IDs are reserved for system use

 system is 1000, shell is 2000, bluetooth is 1002, etc.
 Applications UID range is 10000 → 19999

 Applications
 Applications get a UID at installation time
 Get a dedicated folder for data storage

 Not able to read other applications folders (Unix file 
permissions)

 /data/data/<PKG_NAME>/
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Isolation and sandboxing - SELinux
 SELinux: Security Enhanced Linux

 Enforced starting with Android 4.4 (2013)

 Implemented as a Linux Security Module (LSM)
 Implements security filtering hooks which are called inside the kernel
// Extract of fs/ioctl.c
SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
{

struct fd f = fdget(fd);
int error;
if (!f.file)

return -EBADF;

error = security_file_ioctl(f.file, cmd, arg);

if (error)
goto out;

error = do_vfs_ioctl(f.file, fd, cmd, arg);
// [...]
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Isolation and sandboxing - SELinux
 The SELinux policy defines rules between subject, objects 

and actions
 Subjects and objects are identified with security context 

called SELinux labels
 The firmware contains a set of SELinux rules (the policy) 

loaded during the boot
 Actions not included in the rules are forbidden

 Rule example
allow appdomain app_data_file:file rw_file_perms;

actions
{getattr open read ioctl lock w_file_perms}

subjects
objects
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Isolation and sandboxing - SECCOMP
 SECCOMP is a Linux feature that filters syscalls

 Enforced system-wide since Android 8.0
 Reduces the Kernel attack surface

 Filtering profiles are directly defined in the Android libc 
(Bionic)
 Profiles: System, Application, Application Zygote
 Filtering profile is enabled when an application starts

 Configured by the JVM during application launch
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Isolation and sandboxing - SECCOMP
 The system profile is relatively permissive

 17/271 ARM64 syscalls blocked 
 70/368 ARM syscalls blocked

 Applications can register additional filters to strengthen 
sandboxing
 Chrome
 Media Extractor - media decoding daemon (stagefrights)
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Kinds of Applications
 Four different kinds of applications with associated SELinux 

contexts
 Isolated
 Untrusted
 Privileged
 System

 Android Note: An Application = Java Package
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 Isolated Applications
 Mainly used for Chrome renderer processes
 The most restricted isolation
 Isolation: context=isolated_app and u0_i<uid> (90000 → 99999)

 Different uid per isolated processus
 Untrusted Applications

 All third-party applications installed by the user
 Isolation: context=untrusted_app and u0_a<uid> (10000 → 19999)

Application Contexts
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Application Contexts

 Privileged Applications
 Applications in the firmware or signed by the vendor
 Bypass most Android services permission checks
 Isolation: context=priv_app/platform_app and uid=u0_a<uid>

 System Applications
 Highest privileged applications running as system
 Signed by the vendor
 Isolation: context=system_app and uid=system (1000)
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Android isolates processes ...

But the system needs to do things… It needs interactions !
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Android Permissions
Security Model
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Android Application
 Applications are packaged in an APK 

archive
 Their behavior is described in the 

AndroidManifest.xml
 General information (name, version, icon)
 Components exposed to the system
 Permissions requested
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Permissions in the AndroidManifest.xml
 Permissions example :

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
    package="com.example.myapplication">

    <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
    <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
    <uses-permission android:name="android.permission.READ_CONTACTS" />
    <uses-permission android:name="android.permission.WRITE_CONTACTS" />
    <uses-permission android:name="android.permission.CAMERA" />
    <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
    <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
    <uses-permission android:name="android.permission.INTERNET" />
    <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

    <application
        ...
    </application>

</manifest>
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ACL with Android Permissions

 Different types of permissions
 Install-time permissions
 Runtime permissions

 Some permissions are directly mapped 
to Unix Groups

 Others are checked at runtime during 
interactions with other components

 Provide access control to system 
resources and interactions with other 
apps

Runtime permission
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ACL in Interactions
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Hardening and Mitigations
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Hardening and Mitigations
 Even with robust isolation, there is still some attack surface
 This surface must be hardened to limit and make LPE more 

difficult
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Hardened components

 Some components have strong restrictions
→ Reduce the attack surface of exposed component

 Media Extractor (ex mediaserver)
 Specific SECCOMP rules

 Allow ~ 34/271 syscalls ARM64 and ~42/364 syscalls ARM
 Sandbox Chrome/Webview

 Very limited view of FS + Only 3 services accessible
 Strong sandbox with SECCOMP
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Hardened components
 More and more Rust in Android

 Bluetooth stack
 Keystore2
 Ultra-wideband stack
 DNS-over-HTTP/3

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
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Mitigations

 Against remote exploitation
 ASLR - Address Space Layout Randomization
 PIE - Position Independent Executable

 Scudo Heap allocator (Android 11)
 Designed for security
 Detects allocation corruptions
 Detects double-free
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Mitigations

 CFI - Control Flow Integrity
 Prevents an attacker from altering the execution flow
 Added at built time for specific binaries
 Enabled in all media parsers since Android 8.1
 Enabled in the Kernel since Android 9
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Mitigations
 Compiler added checks:

 UndefinedBehaviorSanitizer:  integer overflow, misaligned 
addresses

 BoundsSanitizer: check array access
 ShadowCallStack: protect the return address

 Process aborts if a sanitizer check is triggered
 Prevent attackers from exploiting vulnerabilities
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Conclusion
 Each Android release improves the OS security

 Enhanced isolation
 Improved mitigation

 Even if there are vulnerabilities
 Difficult to exploit them
 Some bugs are now non-exploitable
 Highly privileged components remain constrained
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https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/
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