
1

THCON23

The Android Security Model
THCON 2023

2023/04/21

2

2THCON23

Agenda

 Introduction
 Security Model
 Android Permissions
 Hardening and Mitigations
 Conclusion

3

3THCON23

Presentation
 Jean-Baptiste Cayrou

 Security researcher @Synacktiv
 Vulnerability research & exploitation

 Synacktiv
 Offensive security company
 Based in France
 ~140 Ninjas
 We are hiring!!!

https://twitter.com/Synacktiv

4

4THCON23

Introduction
 Android is an open-source project led by Google

 Lastest version is Android 13
 ~70% mobile devices worldwide use Android

 It is based on a Linux kernel with the “binder” driver enabled
for process interactions

 In userland, applications are Java packages that run in a
specific JVM

5

5THCON23

Introduction
 Our smartphones contain a lot of sensitive data

 Emails and conversations
 Photos and videos

 And they have many sensors
 Camera
 Microphone
 GPS

 Access to this data and sensors must be protected against
compromised or malicious applications

6

6THCON23

Device Threats

7

7THCON23

Device Threats
 Applications may be malicious or compromised

 For instance, by exploiting browser vulnerabilities
 It is essential to prevent attackers from accessing:

 Data
 Sensors

 Attackers might bypass restrictions by exploiting other
system vulnerabilities
 Perform a LPE (Local Privileged Escalation)

→ Reduce the risks and make LPE as difficult as possible

8

8THCON23

Security Model

9

9THCON23

Security Model
 Android considers applications as untrusted
 Least privilege principle

 Only permit each component to perform necessary actions
 Implement isolation and sandboxing of processes and applications
 Restrict interactions between components

 Hardening and exploit mitigations
 Make vulnerabilities difficult to exploit
 Ideally, make vulnerabilities unexploitable

10

10THCON23

Isolation and sandboxing
 Android uses Linux features to isolate applications and

daemons
 Linux users, groups (DAC security)
 SELinux (MAC security)
 SECCOMP to filter syscalls

11

11THCON23

Isolation and sandboxing - Linux users
 Some user IDs are reserved for system use

 system is 1000, shell is 2000, bluetooth is 1002, etc.
 Applications UID range is 10000 → 19999

 Applications
 Applications get a UID at installation time
 Get a dedicated folder for data storage

 Not able to read other applications folders (Unix file
permissions)

 /data/data/<PKG_NAME>/

12

12THCON23

Isolation and sandboxing - SELinux
 SELinux: Security Enhanced Linux

 Enforced starting with Android 4.4 (2013)

 Implemented as a Linux Security Module (LSM)
 Implements security filtering hooks which are called inside the kernel
// Extract of fs/ioctl.c
SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
{

struct fd f = fdget(fd);
int error;
if (!f.file)

return -EBADF;

error = security_file_ioctl(f.file, cmd, arg);

if (error)
goto out;

error = do_vfs_ioctl(f.file, fd, cmd, arg);
// [...]

13

13THCON23

Isolation and sandboxing - SELinux
 The SELinux policy defines rules between subject, objects

and actions
 Subjects and objects are identified with security context

called SELinux labels
 The firmware contains a set of SELinux rules (the policy)

loaded during the boot
 Actions not included in the rules are forbidden

 Rule example
allow appdomain app_data_file:file rw_file_perms;

actions
{getattr open read ioctl lock w_file_perms}

subjects
objects

14

14THCON23

Isolation and sandboxing - SECCOMP
 SECCOMP is a Linux feature that filters syscalls

 Enforced system-wide since Android 8.0
 Reduces the Kernel attack surface

 Filtering profiles are directly defined in the Android libc
(Bionic)
 Profiles: System, Application, Application Zygote
 Filtering profile is enabled when an application starts

 Configured by the JVM during application launch

15

15THCON23

Isolation and sandboxing - SECCOMP
 The system profile is relatively permissive

 17/271 ARM64 syscalls blocked
 70/368 ARM syscalls blocked

 Applications can register additional filters to strengthen
sandboxing
 Chrome
 Media Extractor - media decoding daemon (stagefrights)

16

16THCON23

Kinds of Applications
 Four different kinds of applications with associated SELinux

contexts
 Isolated
 Untrusted
 Privileged
 System

 Android Note: An Application = Java Package

17

17THCON23

 Isolated Applications
 Mainly used for Chrome renderer processes
 The most restricted isolation
 Isolation: context=isolated_app and u0_i<uid> (90000 → 99999)

 Different uid per isolated processus
 Untrusted Applications

 All third-party applications installed by the user
 Isolation: context=untrusted_app and u0_a<uid> (10000 → 19999)

Application Contexts

18

18THCON23

Application Contexts

 Privileged Applications
 Applications in the firmware or signed by the vendor
 Bypass most Android services permission checks
 Isolation: context=priv_app/platform_app and uid=u0_a<uid>

 System Applications
 Highest privileged applications running as system
 Signed by the vendor
 Isolation: context=system_app and uid=system (1000)

19

19THCON23

Android isolates processes ...

But the system needs to do things… It needs interactions !

20

20

Android Permissions
Security Model

21

21

Android Application
 Applications are packaged in an APK

archive
 Their behavior is described in the

AndroidManifest.xml
 General information (name, version, icon)
 Components exposed to the system
 Permissions requested

22

22

Permissions in the AndroidManifest.xml
 Permissions example :

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.myapplication">

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.READ_CONTACTS" />
 <uses-permission android:name="android.permission.WRITE_CONTACTS" />
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application
 ...
 </application>

</manifest>

23

23

ACL with Android Permissions

 Different types of permissions
 Install-time permissions
 Runtime permissions

 Some permissions are directly mapped
to Unix Groups

 Others are checked at runtime during
interactions with other components

 Provide access control to system
resources and interactions with other
apps

Runtime permission

24

24THCON23

ACL in Interactions

25

25THCON23

Hardening and Mitigations

26

26THCON23

Hardening and Mitigations
 Even with robust isolation, there is still some attack surface
 This surface must be hardened to limit and make LPE more

difficult

27

27THCON23

Hardened components

 Some components have strong restrictions
→ Reduce the attack surface of exposed component

 Media Extractor (ex mediaserver)
 Specific SECCOMP rules

 Allow ~ 34/271 syscalls ARM64 and ~42/364 syscalls ARM
 Sandbox Chrome/Webview

 Very limited view of FS + Only 3 services accessible
 Strong sandbox with SECCOMP

28

28THCON23

Hardened components
 More and more Rust in Android

 Bluetooth stack
 Keystore2
 Ultra-wideband stack
 DNS-over-HTTP/3

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html

29

29THCON23

Mitigations

 Against remote exploitation
 ASLR - Address Space Layout Randomization
 PIE - Position Independent Executable

 Scudo Heap allocator (Android 11)
 Designed for security
 Detects allocation corruptions
 Detects double-free

30

30THCON23

Mitigations

 CFI - Control Flow Integrity
 Prevents an attacker from altering the execution flow
 Added at built time for specific binaries
 Enabled in all media parsers since Android 8.1
 Enabled in the Kernel since Android 9

31

31THCON23

Mitigations
 Compiler added checks:

 UndefinedBehaviorSanitizer: integer overflow, misaligned
addresses

 BoundsSanitizer: check array access
 ShadowCallStack: protect the return address

 Process aborts if a sanitizer check is triggered
 Prevent attackers from exploiting vulnerabilities

32

32THCON23

Conclusion
 Each Android release improves the OS security

 Enhanced isolation
 Improved mitigation

 Even if there are vulnerabilities
 Difficult to exploit them
 Some bugs are now non-exploitable
 Highly privileged components remain constrained

33

THCON23

https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

