2 SYNACKTIV

Breaking Out of the Box
Technical analysis of VirtualBox VM escape with Windows LPE

13 October 2023
Synacktiv
Thomas Bouzerar and Thomas Imbert

Agenda

HF Introduction

£ SYN

About us . .
L]

Thomas Imbert

B @MajorTomSec B @masthoon
W Security researcher at Synacktiv B Security researcher at Synacktiv

m Synacktiv is hiring!
o Offensive security company
® Pentest, Reverse engineering, Development, Incident response
o Offices in Paris, Toulouse, Rennes, Lyon, Lille

Pwn20wn

m Ethical hacking contest organized by Zero Day Initiative (ZDI)

m Edition Pwn20wn Vancouver 2023 in March
o Targets: Virtualization, browsers, OS, Tesla, ...

Master of Pwn Eligible for Add

Target Points on Prize
Oracle VirtualBox $40,000 4 Yes
VMware Workstation $80,000 8 Yes
VMware ESXi $150,000 15 No
Microsoft Hyper-V Client $250,000 25 Yes

* Add-on prize: Additional price for chaining with a Windows LPE

Pwn20wn - Rules . .

VirtualBox escape with Windows LPE

® 2 months to prepare
m 3 attempts of 10 minutes maximum

m Exploit chain:
e VirtualBox Virtual Machine to Host code execution
® Windows host unprivileged user to SYSTEM account

m Total prize: $90,000

Agenda

H VirtualBox

£ SYN

Introduction to VirtualBox

m Type 2 hypervisor
m Open-source

Kernel

Virtual Box Components

Introduction to VirtualBox (2)

\ 4

« Handle interrupts, I/0, ...
« Instruction Emulator
» Emulated devices

Virtual Box Attack Surface

VirtualBox

® Quite large codebase
® No prior knowledge of the target
® Where do we start ?

VirtualBox . .

® Quite large codebase
® No prior knowledge of the target
® Where do we start ?

m Latest version when we started looking at VirtualBox was:

VirtualBox 7.0.6

B Released January 17 2023

B Latest major update was VirtualBox 7.0.0 (released October 10 2022)
® Introduces new virtual devices (IOMMU, TPM)
o EHCI/XHCI open-sourcing
® EFI supports Secure Boot

VirtualBox . .

® Quite large codebase
® No prior knowledge of the target
® Where do we start ?

m Latest version when we started looking at VirtualBox was:

VirtualBox 7.0.6

B Released January 17 2023

B Latest major update was VirtualBox 7.0.0 (released October 10 2022)
® Introduces new virtual devices (IOMMU, TPM)
o EHCI/XHCI open-sourcing
® EFI supports Secure Boot

m According to Pwn20wn rules, target guest OS is now Windows 11
® TPM might be a device of interest here

VirtualBox - TPM . .

m Trusted Platform Module (TPM)
Wikipedia

Trusted Platform Module is an international standard for a secure cryptoprocessor, a dedicated microcontroller
designed to secure hardware through integrated cryptographic keys.

The term can also refer to a chip conforming to the standard.
One of Windows 11's system requirements is TPM 2.0.

VirtualBox

® TPM is mandatory since Windows 11
m Easy to interact with

VirtualBox

® TPM is mandatory since Windows 11
m Easy to interact with

m Looks like a good first device to look at

VirtualBox

® TPM is mandatory since Windows 11
m Easy to interact with

m Looks like a good first device to look at

m grep for "TPM” in the code base
® Most interesting results are:

W ./src/libs/libtpms/*
./src/VBox/Devices/Security/DevTpm.cpp
./src/VBox/Devices/Security/DrvTpmEmu.cpp
./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
./src/VBox/Devices/Security/DrvTpmHost.cpp

11/4

VirtualBox

TPM is mandatory since Windows 11
Easy to interact with

m Looks like a good first device to look at

grep for "TPM” in the code base
® Most interesting results are:

W ./src/libs/libtpms/*
./src/VBox/Devices/Security/DevTpm.cpp
./src/VBox/Devices/Security/DrvTpmEmu.cpp
./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
./src/VBox/Devices/Security/DrvTpmHost.cpp

m libtpms is an open-source library capable of emulating TPM in hypervisors, also used by QEMU

VirtualBox - TPM

m Time to dig in the code

VirtualBox - TPM

m Time to dig in the code

B ./src/VBox/Devices/Security/DevTpm.cpp
® Manages the TPM virtual device

VirtualBox - TPM

m Time to dig in the code

B ./src/VBox/Devices/Security/DevTpm.cpp
® Manages the TPM virtual device

B ./src/VBox/Devices/Security/DrvTpmEmu.cpp
® Implementation of a virtual TPM using swtpm (yet another library)

VirtualBox - TPM

m Time to dig in the code

B ./src/VBox/Devices/Security/DevTpm.cpp
® Manages the TPM virtual device

B ./src/VBox/Devices/Security/DrvTpmEmu.cpp
® Implementation of a virtual TPM using swtpm (yet another library)

B ./src/VBox/Devices/Security/DrvTpmHost.cpp
® TPM bridge to the host TPM chip

VirtualBox - TPM

m Time to dig in the code

B ./src/VBox/Devices/Security/DevTpm.cpp
® Manages the TPM virtual device

B ./src/VBox/Devices/Security/DrvTpmEmu.cpp
® Implementation of a virtual TPM using swtpm (yet another library)

B ./src/VBox/Devices/Security/DrvTpmHost.cpp
® TPM bridge to the host TPM chip

B ./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
® TPM emulator using libtpms

VirtualBox - TPM

m Time to dig in the code

B ./src/VBox/Devices/Security/DevTpm.cpp
® Manages the TPM virtual device

B ./src/VBox/Devices/Security/DrvTpmEmu.cpp
® Implementation of a virtual TPM using swtpm (yet another library)
m ./src/VBox/Devices/Security/DrvTpmHost.cpp
® TPM bridge to the host TPM chip
B ./src/VBox/Devices/Security/DrvTpmEmuTpms.cpp
® TPM emulator using libtpms
m Reading through the code, we can quickly focus on DevTpm.cpp and DrvTpmEmuTpms . cpp

® Responsible for emulating and interacting with the default virtual TPM device

VirtualBox - DevTpm

m DevTpm.cpp creates a new virtual TPM and binds it to a VM each time it boots

VirtualBox - DevTpm

m DevTpm.cpp creates a new virtual TPM and binds it to a VM each time it boots

m Set-up of the device is done in tpmR3Construct for the Ring-3 side
® Registers a new MMIO region for the VM at a fixed location (0xFED40000)
® Read and write handlers to the MMIO region are tpmMmioRead and tpmMmioWrite

VirtualBox - DevTpm

m DevTpm.cpp creates a new virtual TPM and binds it to a VM each time it boots

m Set-up of the device is done in tpmR3Construct for the Ring-3 side
® Registers a new MMIO region for the VM at a fixed location (0xFED40000)
® Read and write handlers to the MMIO region are tpmMmioRead and tpmMmioWrite

B Most of the TPM emulator logic is done in R3
m Invoked methods from RO will often jump to the R3 implementation

VirtualBox - DevTpm

DevTpm.cpp creates a new virtual TPM and binds it to a VM each time it boots

m Set-up of the device is done in tpmR3Construct for the Ring-3 side
® Registers a new MMIO region for the VM at a fixed location (0xFED40000)
® Read and write handlers to the MMIO region are tpmMmioRead and tpmMmioWrite

Most of the TPM emulator logic is done in R3
m Invoked methods from RO will often jump to the R3 implementation

B So let’s look into those MMIO handlers!

VirtualBox - tpmMmioRead

static DECLCALLBACK(VBOXSTRICTRC) tpmMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
{

VAT Y

uint64_t u64;

rc = tpmMmioFifoRead(pDevIns, pThis, pLoc, bLoc, uReg, &u64, cbh);

VAR

VirtualBox - tpmMmioFifoRead

static VBOXSTRICTRC tpmMmioFifoRead(PPDMDEVINS pDevIns, PDEVTPM pThis, PDEVTPMLOCALITY plLoc,

{

uint8_t bLoc, uint32_t uReg, uint64_t *pu64, size_t cb)

/% .. %/
if (pThis->offCmdResp <= pThis->cbCmdResp - cb)
{

memcpy (pu64, &pThis->abCmdResp[pThis->offCmdResp], cb);
pThis->offCmdResp += (uint32_t)cb;

}
else

memset(pu64, Oxff, cb);
/% ... %/

VirtualBox - tpmMmioFifoRead

static VBOXSTRICTRC tpmMmioFifoRead(PPDMDEVINS pDevIns, PDEVTPM pThis, PDEVTPMLOCALITY pLoc,
uint8_t bLoc, uint32_t uReg, uint64_t *pu64, size_t cb)
{
/% .. %/
if (pThis->offCmdResp <= pThis->cbCmdResp - cb)
{
memcpy (pu64, &pThis->abCmdResp[pThis->offCmdResp], cb);
pThis->offCmdResp += (uint32_t)cb;
}
else
memset(pu64, Oxff, cb);
/% ... %/

m No checkon cb!

VirtualBox - tpmMmioFifoRead

memcpy (pu64, &pThis->abCmdResp[pThis->offCmdRespl, cb);

m Stack buffer overflow with controlled data
® pub4 points to a stack allocated 64-bit integer
® abCmdResp is a shared buffer for input commands and response data
® cb is the size of the read as requested by the VMEXIT trap

VirtualBox - tpmMmioFifoRead

memcpy (pu64, &pThis->abCmdResp[pThis->offCmdRespl, cb);

m Stack buffer overflow with controlled data
® pub4 points to a stack allocated 64-bit integer
® abCmdResp is a shared buffer for input commands and response data
® cb is the size of the read as requested by the VMEXIT trap

m So, how do we trigger it ?

VirtualBox - tpmMmioFifoRead

memcpy (pu64, &pThis->abCmdResp[pThis->offCmdRespl, cb);

m Stack buffer overflow with controlled data
® pub4 points to a stack allocated 64-bit integer
® abCmdResp is a shared buffer for input commands and response data
® cb is the size of the read as requested by the VMEXIT trap

m So, how do we trigger it ?

m Afew ideas:
® Instructions which trigger atomic loads of >8 bytes
m AVXinstructions
W x87 instructions (FRSTOR, ...)
e DMA

VirtualBox - tpmMmioFifoRead

memcpy (pu64, &pThis->abCmdResp[pThis->offCmdRespl, cb);

m Stack buffer overflow with controlled data
® pub4 points to a stack allocated 64-bit integer
® abCmdResp is a shared buffer for input commands and response data
® cb is the size of the read as requested by the VMEXIT trap

m So, how do we trigger it ?

m Afew ideas:
® Instructions which trigger atomic loads of >8 bytes
m AVXinstructions
W x87 instructions (FRSTOR, ...)
e DMA

m But we don't even understand the architecture of the hypervisor yet!

VirtualBox - Going deeper . .

m No information leak so far
o Can we make our own ?

First approach

m Windows DLL base addresses are aligned on 0x10000
B Partial RIP overwrite
® We need control over the size of the overflow
o Overwrite part of the response buffer with host pointers
® Trigger the bug a second time for code execution

VirtualBox - Going deeper

® We need control over the size of the overflow

m VirtualBox exposes multiple APl methods for interacting with the guest physical memory:
® PGMPhysRead
® PGMPhysWrite

VirtualBox - Going deeper

® We need control over the size of the overflow

m VirtualBox exposes multiple APl methods for interacting with the guest physical memory:
® PGMPhysRead
® PGMPhysWrite

m They go through the MMIO handlers in case of MMIO addresses!

VirtualBox - Going deeper

® We need control over the size of the overflow

m VirtualBox exposes multiple APl methods for interacting with the guest physical memory:
® PGMPhysRead
® PGMPhysWrite

m They go through the MMIO handlers in case of MMIO addresses!

VirtualBox - Going deeper

® We need control over the size of the overflow

m VirtualBox exposes multiple APl methods for interacting with the guest physical memory:
® PGMPhysRead
® PGMPhysWrite

m They go through the MMIO handlers in case of MMIO addresses!

® Many wrappers around them: pdmR3DevHlp_PhysRead, pdmRODevH1p_PhysRead, ...

VirtualBox - Going deeper

® We need control over the size of the overflow

m VirtualBox exposes multiple APl methods for interacting with the guest physical memory:
® PGMPhysRead
® PGMPhysWrite

m They go through the MMIO handlers in case of MMIO addresses!

® Many wrappers around them: pdmR3DevHlp_PhysRead, pdmRODevH1p_PhysRead, ...
® Or around those wrappers themselves: PDMDevH1pPhysRead, PDMDevH1pPhysReadMeta, ...

VirtualBox - Going deeper

® We need control over the size of the overflow

m VirtualBox exposes multiple APl methods for interacting with the guest physical memory:
® PGMPhysRead
® PGMPhysWrite

m They go through the MMIO handlers in case of MMIO addresses!

® Many wrappers around them: pdmR3DevHlp_PhysRead, pdmRODevH1p_PhysRead, ...
® Or around those wrappers themselves: PDMDevH1pPhysRead, PDMDevH1pPhysReadMeta, ...

VirtualBox - Going deeper

® We need control over the size of the overflow

m VirtualBox exposes multiple APl methods for interacting with the guest physical memory:
® PGMPhysRead
® PGMPhysWrite

m They go through the MMIO handlers in case of MMIO addresses!

m Many wrappers around them: pdmR3DevH1p_PhysRead, pdmR@DevH1p_PhysRead, ...
® Or around those wrappers themselves: PDMDevH1pPhysRead, PDMDevH1pPhysReadMeta, ...

m Basically, grep for PhysRead or PhysWrite

VirtualBox - Going deeper

® We need control over the size of the overflow

m VirtualBox exposes multiple APl methods for interacting with the guest physical memory:
® PGMPhysRead
® PGMPhysWrite

m They go through the MMIO handlers in case of MMIO addresses!

m Many wrappers around them: pdmR3DevH1p_PhysRead, pdmR@DevH1p_PhysRead, ...
® Or around those wrappers themselves: PDMDevH1pPhysRead, PDMDevH1pPhysReadMeta, ...

m Basically, grep for PhysRead or PhysWrite
® Most of those methods end up calling PGMPhysRead / PGMPhysWrite

VirtualBox - Going deeper . .

VMMDev device

m VMMDev is a virtual device used for Host <-> Guest communication
® Most features are disabled by default, but the device itself is enabled!

VirtualBox - Going deeper . .

VMMDev device

m VMMDev is a virtual device used for Host <-> Guest communication
® Most features are disabled by default, but the device itself is enabled!

HGCM Requests

B Host-Guest Communication Manager
B The guest can send requests to the host

® Simple RPC protocol

o Format well documented by other researchers
m Call parameters may be integers/buffers

® Read from the guest memory (DMA)

VirtualBox - Controlled overflow size . .

Guest physical read with arbitrary size

m Use HGCM calls as a DMA read oracle around PGMPhysRead
® Remap the MMIO region to a virtual address using MmMapIoSpace
® Make a dummy HGCM call with a VMMDevHGCMParmType_LinAddr buffer parameter
B Address of the parameter is the remapped virtual address
W Arbitrary size can be given

VirtualBox - Controlled overflow size . .

Guest physical read with arbitrary size

m Use HGCM calls as a DMA read oracle around PGMPhysRead
® Remap the MMIO region to a virtual address using MmMapIoSpace
® Make a dummy HGCM call with a VMMDevHGCMParmType_LinAddr buffer parameter
B Address of the parameter is the remapped virtual address
W Arbitrary size can be given

m We get an arbitrary physical read in the guest with controlled size!
® Proof of Concept gives us RIP control (full or partial overwrite)

VirtualBox - Controlled overflow size . .

Guest physical read with arbitrary size

B Use HGCM calls as a DMA read oracle around PGMPhysRead
® Remap the MMIO region to a virtual address using MmMapIoSpace
® Make a dummy HGCM call with a VMMDevHGCMParmType_LinAddr buffer parameter
B Address of the parameter is the remapped virtual address
W Arbitrary size can be given

m We get an arbitrary physical read in the guest with controlled size!
® Proof of Concept gives us RIP control (full or partial overwrite)

Initial approach

m Create our own infoleak (partial RIP overwrite)
o Overwrite part of the response buffer with host pointers

VirtualBox - Controlled overflow size . .

Guest physical read with arbitrary size

B Use HGCM calls as a DMA read oracle around PGMPhysRead
® Remap the MMIO region to a virtual address using MmMapIoSpace
® Make a dummy HGCM call with a VMMDevHGCMParmType_LinAddr buffer parameter
B Address of the parameter is the remapped virtual address
W Arbitrary size can be given

m We get an arbitrary physical read in the guest with controlled size!
® Proof of Concept gives us RIP control (full or partial overwrite)

Initial approach

m Create our own infoleak (partial RIP overwrite)
o Overwrite part of the response buffer with host pointers

m No suitable gadget candidate :-(

VirtualBox - PGMPhysRead

bytes

x18000

Read
@0

VirtualBox - PGMPhysRead

PGMPhysRead

Read bytes .

. Read bytes
@ 0x18000 i & Ceraten

VirtualBox - PGMPhysRead

PGMPhysRead

Read bytes

Read bytes
@ 0x18000 @ 0x18000

Read bytes

@ 0x19000

VirtualBox - PGMPhysRead

PGMPhysRead

Read bytes .

Read bytes
@ 0x18000 @ 0x18000

I

Read bytes

@ 0x19000

I R

Read bytes

@ 0x20000

I
‘.

VirtualBox - PGMPhysRead

PGMPhysRead

Read bytes

. Read bytes
@ 0x18000 i & Ceraten

Read bytes

@ 0x19000

Read bytes

@ 0x20000

I
‘.

. o
Normal memcpy v

.
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

VirtualBox - PGMPhysRead

PGMPhysRead

Read bytes . N
Read bytes

@ 0x18000

Read bytes

@ 0x19000

@ 0x18000

Read bytes

@ 0x20000

4 .
B .
Normal memcpy i
:
'
'
'
'

No

.
.
.
.
.
.
.
.
.
' Handler \ .
.
.
.
.
.
.
.
.
.
.
.
.

VirtualBox - PGMPhysRead

PGMPhysRead

Read bytes .
Read bytes

@ 0x18000

S

Read bytes

@ 0x19000
Read bytes

@ 0x20000

@ 0x18000

return OK

memset
bytes with 0xFF

VirtualBox - PGMPhysRead

.
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

.

Read

bytes

@ 0x18000

Normal
Page 7

&«

No

-Yes: MMIO Read -Success—|
Handler

memset
bytes with 0xFF

POMPhysRead -
Read bytes
@ 0x18000

Read bytes

@ 0x19000

Read bytes

@ 0x20000

VirtualBox - PGMPhysRead

Read bytes

@ 0x18000

.
1 Normal memcpy

-Yes: MMIO Read -Success—|
Handler

Fail

menm:
bytes with 0xFF

return error

memset
bytes with 0xFF

No

POMPhysRead -
Read bytes
@ 0x18000

Read bytes

@ 0x19000

Read bytes

@ 0x20000

VirtualBox - PGMPhysRead

B Any call to PGMPhysRead which does not validate its return value would potentially leak data
® We can leak any kind of data!

PGMI spad /
arhilran,il'ohak Stacklinfoleak!
A | N O

Uninitialized memory read in low level API

VirtualBox - PGMPhysRead . .

Finding a good leak candidate

m Need to find a call to PGMPhysRead from a default device which:
® Reads in a stack buffer
o Does not validate the return value
® Writes back the data at a known location

VirtualBox - PGMPhysRead . .

Finding a good leak candidate

m Need to find a call to PGMPhysRead from a default device which:
® Reads in a stack buffer
o Does not validate the return value
® Writes back the data at a known location

eXtensible Host Controller Interface (xHCI)

B Does a lot of physical memory read/write accesses
m Copies data from arbitrary physical addresses to other arbitrary physical addresses

VirtualBox - xHCI

static unsigned xhciR3ConfigureDevice(PPDMDEVINS pDevIns, PXHCI pThis, uint64_t uInpCtxAddr, uint8_t uSlotID, bool fDC)

{
/*x ... %/
XHCI_DEV_CTX dc_inp; // sizeof (XHCI_DEV_CTX) = 0x400
XHCI_DEV_CTX dc_out;
/% ... %/
PDMDevH1pPCIPhysReadMeta(pDevIns, GCPhysInpSlot, &dc_inp, num_inp_ctx * sizeof(XHCI_DS_ENTRY));
VA V)
for (uDCI = 2; uDCI < 32; ++uDCI)
{
/% ... %/
dc_out.entry[uDCI].ep = dc_inp.entry[uDCI].ep;
/% ... %/
}
/% ... %/
PDMDevH1pPCIPhysWriteMeta(pDevIns, GCPhysOutSlot, &dc_out, num_out_ctx * sizeof (XHCI_DS_ENTRY));
/% L%/
}

m Almost 0x400 bytes of Uninitialized stack memory read!

VirtualBox - Exploitation

m Information leak allows reading:
® Return values
® Stack canaries

VirtualBox - Exploitation

m Information leak allows reading:
® Return values
® Stack canaries

m Spoiler: for performance reasons, there is no stack canary in VirtualBox...

VirtualBox - Exploitation

m Information leak allows reading:
® Return values
® Stack canaries

m Spoiler: for performance reasons, there is no stack canary in VirtualBox...

VirtualBox - Exploitation

m Information leak allows reading:
® Return values
® Stack canaries

m Spoiler: for performance reasons, there is no stack canary in VirtualBox...

m Defeat ASLR, build a ROP-chain, execute a shellcode

VirtualBox - Exploitation . .

m Information leak allows reading:
® Return values
® Stack canaries

m Spoiler: for performance reasons, there is no stack canary in VirtualBox...

m Defeat ASLR, build a ROP-chain, execute a shellcode

Shellcode

B Use exported method RTLdrGetSystemSymbol from VBoxRT.DLL to resolve external symbols
m Call PGMPhysRead to read PE file from guest memory

B Write PE file in %ProgramData%\a.exe

m Call WinExec to execute stage 2

VirtualBox - Exploitation . .

m Information leak allows reading:
® Return values
® Stack canaries

m Spoiler: for performance reasons, there is no stack canary in VirtualBox...

m Defeat ASLR, build a ROP-chain, execute a shellcode

Shellcode

B Use exported method RTLdrGetSystemSymbol from VBoxRT.DLL to resolve external symbols
m Call PGMPhysRead to read PE file from guest memory

B Write PE file in %ProgramData%\a.exe

m Call WinExec to execute stage 2

m 100% reliable VM escape!

Agenda

El Windows

£ SYN

Windows LPE . .

Exploit chain

m VirtualBox escape exploit

® VirtualBox VM process runs as unprivileged user with Medium Integrity Level
m Windows Local Privilege Escalation

o Large Windows attack surface

® Pwn20wn requires kernel mode vulnerability

Research

m Find a quick and stable bug in a Windows driver
m Exploit it and spawn a SYSTEM command prompt

Finding a target

B Static analysis of random drivers in System32\drivers
® Pick ones with interesting imports: %Probe%

B Review IOCTL handlers for memory corruption or logic bugs
® Many drivers cannot be loaded without administrator access

MSKSSRV

m Part of Microsoft Streaming component

m Content Streaming between two processes
® Implemented as shared memory

m Driver automatically loaded on demand
o Without administrator access
o Device path:
\\?\root#system#0000#{3c0d501a-140b-11d1-b40f-00a0c9223196}\{96€080c7-143c-11d1-b40f-00a0c9223196}&{3c0d501a-140b-11d1-b40f-00a0c9223196}

MSKSSRYV - Initialization A

NTOS

MSKSSRV Driver

4

N

e Open driver
e |nitialize Context

e |nitialize Stream id:1

MSKSSRYV - Initialization B

¢ Opendriver
o Register Stream id:1

MSKSSRYV - Stream Publish

NTOS

Address 0x420000
Size 0x2000

Address 0x480000
Size 0x1000

MSKSSRV Driver

4

N

e Stream id:1 Publish Tx
o Transmit 2 buffers

o Kernel saves the buffers
in MDL (Memory
Descriptor List)

MSKSSRYV - Stream Consume

NTOS MSKSSRV Driver

4

e Stream id:1 Consume Tx
o Receive 2 buffers

* Kernel maps the buffers
from MDL to Process B

N

Address 0x674000
Size 0x1000

Address 0x675000
Size 0x2000

MSKSSRV - Shared Memory

NTOS MSKSSRYV Driver

The same buffer in Process A and B is mapped
to the same physical address (Shared Memory)

MSKSSRV Vulnerability . .

m MSKSSRYV does NOT validate the address of the buffer
® Any virtual address can be mapped even Kernel mode memory

// Vulnerability in the function FsAllocAndLockMdl (from IOCTL 0x2F0408)
Mdl = IoAllocateMdl(InputAddress, InputSize, 0, @, NULL);
/%
MmProbeAndLockPages Invalid Access Mode
* KernelMode used instead of UserMode
% The kernel will not check (called Probe) if the address belongs in userland
*/
MmProbeAndLockPages(Mdl, KernelMode, IoWriteAccess);

Vulnerability Outcome

m Arbitrary kernel virtual memory may be mapped to user-mode with read and write access
m — Arbitrary kernel read and write

MSKSSRV Exploitation . .

Locate the TOKEN

m Kernel TOKEN object describes the security context of the process
B The kernel-mode address of the current process token can be obtained using NtQuerySystemInformation

Corrupt the TOKEN

B Map the TOKEN to user-mode using the vulnerability
m Overwrite the TOKEN privileges bit-field to gain all privileges

Escalate to SYSTEM

m Using the SeDebugPrivilege, hijack a SYSTEM process
® Run SYSTEM command prompt !

MSKSSRV Result

Microsoft Windows [Version 18.8.22621.2134]
(c) Microsoft Corporation. All rights reserved.

C: \Windows\System32>whoami
nt authority\system

C : \Windows\System32>

SYSTEM Command Prompt !

m Exploit takes less than 1 second

m 100% stable bug
® Missing probe are powerful bugs

Agenda

Conclusion

£ SYN

Conclusion

Simple bugs

B There are still low hanging fruits

Conclusion

Simple bugs

B There are still low hanging fruits
H There are also deeper bugs

Conclusion

Simple bugs

B There are still low hanging fruits
H There are also deeper bugs

Conclusion

Simple bugs

B There are still low hanging fruits
H There are also deeper bugs

No real mitigation

m No stack canary in VirtualBox

Conclusion

Simple bugs

B There are still low hanging fruits
H There are also deeper bugs

No real mitigation

m No stack canary in VirtualBox
® Smash the stack like it's 2010

Conclusion

Simple bugs

B There are still low hanging fruits
H There are also deeper bugs

No real mitigation

m No stack canary in VirtualBox
® Smash the stack like it's 2010

m Relatively weak mitigations in Windows

Conclusion

Simple bugs

B There are still low hanging fruits
H There are also deeper bugs

No real mitigation

m No stack canary in VirtualBox
® Smash the stack like it's 2010

m Relatively weak mitigations in Windows

Conclusion

Simple bugs

B There are still low hanging fruits
H There are also deeper bugs

No real mitigation

m No stack canary in VirtualBox
® Smash the stack like it's 2010

m Relatively weak mitigations in Windows

Disable AV

m Defender blocked our first attempt

H 47/48

Conclusion

m 3-bugs chain
® 2 unique bugs, 1 bug collision (TPM stack buffer overflow)

m We won Pwn20wn!

PRIZE § POINTS

PWN

Synacktiv

=]
o=
=
[—]
[==)
(=
L
(=]
=T
(5 9]
—

Team Viettel

Qrious Security

MASTER

74

;r
<

AbdulAziz Hariri

\

\
bs)
7

| Tryit, it's fun!

48/48

. QUESTIONS?

|
| ey

	Introduction
	VirtualBox
	Windows
	Conclusion

